scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Confirmation that "Brachyspira hampsonii" clade I (Canadian strain 30599) causes mucohemorrhagic diarrhea and colitis in experimentally infected pigs.

10 Jun 2014-BMC Veterinary Research (BioMed Central)-Vol. 10, Iss: 1, pp 129-129
TL;DR: It is concluded that “Brachyspira hampsonii” clade I strain 30599 is pathogenic and causes mucohemorrhagic diarrhea and colitis in susceptible pigs.
Abstract: Background: “Brachyspira hampsonii”, discovered in North America in 2010 associated with dysentery-like illness, is an economically relevant swine pathogen resulting in decreased feed efficiency and increased morbidity, mortality and medication usage. “B. hampsonii” clade II strain 30446 has been shown to be causally associated with mucohemorrhagic diarrhea and colitis. Our objectives were to determine if “Brachyspira hampsonii” clade I strain 30599 is pathogenic to pigs, and to evaluate the relative diagnostic performance of three ante mortem sampling methodologies (direct PCR on feces, PCR on rectal GenoTube Livestock swabs, Brachyspira culture from rectal swabs). Five-week old pigs were intragastrically inoculated thrice with 10 8 genomic equivalents "B. hampsonii" (n= 12), or served as sham controls (n= 6). Feces were sampled and consistency assessed daily. Necropsies were performed 24 h after peak clinical signs. Results: One pig died due to unrelated illness. Nine of 11 inoculated pigs, but no controls, developed mucoid or mucohemorrhagic diarrhea (MHD). Characteristic lesions of swine dysentery were observed in large intestine. “B. hampsonii” strain 30599 DNA was detected by qPCR in feces of all inoculated pigs for up to 6 days prior to the onset of MHD. The organism was isolated from the feces and colons of pigs demonstrating MHD, but not from controls. B. intermedia was isolated from inoculated pigs without MHD, and from 5 of 6 controls. Conclusions: We conclude that “Brachyspira hampsonii” clade I strain 30599 is pathogenic and causes mucohemorrhagic diarrhea and colitis in susceptible pigs. Moreover, the three sampling methodologies performed similarly. GenoTube Livestock, a forensic swab designed to preserve DNA during shipping is a useful tool especially in settings where timely transport of diagnostic samples is challenging.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: An overview of knowledge on the etiology, pathogenesis, and diagnosis of swine dysentery, with insights into risk factors and control is provided.
Abstract: Swine dysentery is a severe enteric disease in pigs, which is characterized by bloody to mucoid diarrhea and associated with reduced growth performance and variable mortality. This disease is most ...

56 citations


Cites background from "Confirmation that "Brachyspira hamp..."

  • ...hampsonii’’ isolates revealed 2 distinct clades (clade I and clade II)(22); however, this genetic distinction does not appear to be clinically significant, as disease consistent with classic SD has been experimentally reproduced following inoculation with strains from each clade.(15,16,26,109) Although ‘‘B....

    [...]

Journal ArticleDOI
TL;DR: B. hampsonii is classified as a unique species with genetically diverse yet phenotypically similar genomovars (I, II, and III) and the type strain NSH-16 (= ATCC BAA-2463 = NCTC 13792).
Abstract: Swine dysentery (SD) is a mucohemorrhagic colitis of swine classically caused by infection with the intestinal spirochete Brachyspira hyodysenteriae Since around 2007, cases of SD have occurred in North America associated with a different strongly beta-hemolytic spirochete that has been molecularly and phenotypically characterized and provisionally named "Brachyspira hampsonii." Despite increasing international interest, B. hampsonii is currently not recognized as a valid species. To support its recognition, we sequenced the genomes of strains NSH-16T, NSH-24, and P280/1, representing B. hampsonii genetic groups I, II, and III, respectively, and compared them with genomes of other valid Brachyspira species. The draft genome of strain NSH-16T has a DNA G+C content of 27.4% and an approximate size of 3.2 Mb. Genomic indices, including digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and average amino acid identity (AAI), clearly differentiated B. hampsonii from other recognized Brachyspira species. Although discriminated genotypically, the three genetic groups are phenotypically similar. By electron microscopy, cells of different strains of B. hampsonii measure 5 to 10 μm by 0.28 to 0.34 μm, with one or two flat curves, and have 10 to 14 periplasmic flagella inserted at each cell end. Using a comprehensive evaluation of genotypic (gene comparisons and multilocus sequence typing and analysis), genomic (dDDH, ANI, and AAI) and phenotypic (hemolysis, biochemical profiles, protein spectra, antibiogram, and pathogenicity) properties, we classify Brachyspira hampsonii sp. nov. as a unique species with genetically diverse yet phenotypically similar genomovars (I, II, and III). We designate the type strain NSH-16 (= ATCC BAA-2463 = NCTC 13792).

36 citations

Journal ArticleDOI
TL;DR: This short review discusses swine dysentery caused by the strongly haemolytic Brachyspira hyodysenteriae, particularly the cyclical nature of the disease whereby it can largely disappear as a clinical problem from a farm or region, and re-emerge years later.
Abstract: This short review discusses the increasing complexity that has developed around the understanding of Brachyspira species that infect pigs, and their ability to cause disease. It describes the recognition of new weakly haemolytic Brachyspira species, and the growing appreciation that Brachyspira pilosicoli and some other weakly haemolytic species may be pathogenic in pigs. It discusses swine dysentery (SD) caused by the strongly haemolytic Brachyspira hyodysenteriae, particularly the cyclical nature of the disease whereby it can largely disappear as a clinical problem from a farm or region, and re-emerge years later. The review then describes the recent emergence of two newly described strongly haemolytic pathogenic species, “Brachyspira suanatina” and “Brachyspira hampsonii” both of which appear to have reservoirs in migratory waterbirds, and which may be transmitted to and between pigs. “B. suanatina” seems to be confined to Scandinavia, whereas “B. hampsonii” has been reported in North America and Europe, causes a disease indistinguishable from SD, and has required the development of new routine diagnostic tests. Besides the emergence of new species, strains of known Brachyspira species have emerged that vary in important biological properties, including antimicrobial susceptibility and virulence. Strains can be tracked locally and at the national and international levels by identifying them using multilocus sequence typing (MLST) and comparing them against sequence data for strains in the PubMLST databases. Using MLST in conjunction with data on antimicrobial susceptibility can form the basis for surveillance programs to track the movement of resistant clones. In addition some strains of B. hyodysenteriae have low virulence potential, and some of these have been found to lack the B. hyodysenteriae 36 kB plasmid or certain genes on the plasmid whose activity may be associated with colonization. Lack of the plasmid or the genes can be identified using PCR testing, and this information can be added to the MLST and resistance data to undertake detailed surveillance. Strains of low virulence are particularly important where they occur in high health status breeding herds without causing obvious disease: potentially they could be transmitted to production herds where they may colonize more effectively and cause disease under stressful commercial conditions.

36 citations

Journal ArticleDOI
01 Dec 2016-PLOS ONE
TL;DR: Analysis of a block of six plasmid virulence-associated genes showed a lack of consistency between their presence or absence and their origin from herds currently with or without disease; however, significantly fewer isolates from the 2000s and from 2014/16 had this block of genes compared to isolate from the 1980s and 1990s.
Abstract: Swine dysentery (SD) is a mucohemorrhagic colitis, classically seen in grower/finisher pigs and caused by infection with the anaerobic intestinal spirochete Brachyspira hyodysenteriae. More recently, however, the newly described species Brachyspira hampsonii and Brachyspira suanatina have been identified as causing SD in North America and/or Europe. Furthermore, there have been occasions where strains of B. hyodysenteriae have been recovered from healthy pigs, including in multiplier herds with high health status. This study investigated whether cases of SD in Australia may be caused by the newly described species; how isolates of B. hyodysenteriae recovered from healthy herds compared to isolates from herds with disease; and how contemporary isolates compare to those recovered in previous decades, including in their plasmid gene content and antimicrobial resistance profiles. In total 1103 fecal and colon samples from pigs in 97 Australian herds were collected and tested. Of the agents of SD only B. hyodysenteriae was found, being present in 34 (35.1%) of the herds, including in 14 of 24 (58%) herds that had been considered to be free of SD. Multilocus sequence typing applied to 96 isolates from 30 herds and to 53 Australian isolates dating from the 1980s through the early 2000s showed that they were diverse, distinct from those reported in other countries, and that the 2014/16 isolates generally were different from those from earlier decades. These findings provided evidence for ongoing evolution of B. hyodysenteriae strains in Australia. In seven of the 20 herds where multiple isolates were available, two to four different sequence types (STs) were identified. Isolates with the same STs also were found in some herds with epidemiological links. Analysis of a block of six plasmid virulence-associated genes showed a lack of consistency between their presence or absence and their origin from herds currently with or without disease; however, significantly fewer isolates from the 2000s and from 2014/16 had this block of genes compared to isolates from the 1980s and 1990s. It is speculated that loss of these genes may have been responsible for the occurrence of milder disease occurring in recent years. In addition, fewer isolates from 2014/16 were susceptible to the antimicrobials lincomycin, and to a lesser extent tiamulin, than those from earlier Australian studies. Four distinct multi-drug resistant strains were identified in five herds, posing a threat to disease control.

31 citations

References
More filters
Journal ArticleDOI
TL;DR: The large heterogeneity of literature on laboratory errors together with the prevalence of evidence that most errors occur in the preanalytical phase suggest the implementation of a more rigorous methodology for error detection and classification and the adoption of proper technologies for error reduction.
Abstract: Background: The problem of medical errors has recently received a great deal of attention, which will probably increase. In this minireview, we focus on this issue in the fields of laboratory medicine and blood transfusion. Methods: We conducted several MEDLINE queries and searched the literature by hand. Searches were limited to the last 8 years to identify results that were not biased by obsolete technology. In addition, data on the frequency and type of preanalytical errors in our institution were collected. Results: Our search revealed large heterogeneity in study designs and quality on this topic as well as relatively few available data and the lack of a shared definition of “laboratory error” (also referred to as “blunder”, “mistake”, “problem”, or “defect”). Despite these limitations, there was considerable concordance on the distribution of errors throughout the laboratory working process: most occurred in the pre- or postanalytical phases, whereas a minority (13–32% according to the studies) occurred in the analytical portion. The reported frequency of errors was related to how they were identified: when a careful process analysis was performed, substantially more errors were discovered than when studies relied on complaints or report of near accidents. Conclusions: The large heterogeneity of literature on laboratory errors together with the prevalence of evidence that most errors occur in the preanalytical phase suggest the implementation of a more rigorous methodology for error detection and classification and the adoption of proper technologies for error reduction. Clinical audits should be used as a tool to detect errors caused by organizational problems outside the laboratory.

758 citations


"Confirmation that "Brachyspira hamp..." refers background in this paper

  • ...Moreover, a large percentage of laboratory errors occur during the pre-analytical phase of diagnosis, prior to samples arriving at the diagnostic laboratory [15,32]....

    [...]

  • ...One of the main obstacles to obtaining high quality diagnostic samples and reliable results is the transit time required to ship samples to a diagnostic laboratory [15,16]....

    [...]

Journal ArticleDOI
TL;DR: Evaluating the frequency and types of mistakes found in the "stat" section of the Department of Laboratory Medicine of the University-Hospital of Padova found that the promotion of quality control and continuous improvement of the total testing process, including pre- and postanalytical phases, seems to be a prerequisite for an effective laboratory service.
Abstract: Application of Total Quality Management concepts to laboratory testing requires that the total process, including preanalytical and postanalytical phases, be managed so as to reduce or, ideally, eliminate all defects within the process itself. Indeed a "mistake" can be defined as any defect during the entire testing process, from ordering tests to reporting results. We evaluated the frequency and types of mistakes found in the "stat" section of the Department of Laboratory Medicine of the University-Hospital of Padova by monitoring four different departments (internal medicine, nephrology, surgery, and intensive care unit) for 3 months. Among a total of 40490 analyses, we identified 189 laboratory mistakes, a relative frequency of 0.47%. The distribution of mistakes was: preanalytical 68.2%, analytical 13.3%, and postanalytical 18.5%. Most of the laboratory mistakes (74%) did not affect patients' outcome. However, in 37 patients (19%), laboratory mistakes were associated with further inappropriate investigations, thus resulting in an unjustifiable increase in costs. Moreover, in 12 patients (6.4%) laboratory mistakes were associated with inappropriate care or inappropriate modification of therapy. The promotion of quality control and continuous improvement of the total testing process, including pre- and postanalytical phases, seems to be a prerequisite for an effective laboratory service.

536 citations


"Confirmation that "Brachyspira hamp..." refers background in this paper

  • ...Moreover, a large percentage of laboratory errors occur during the pre-analytical phase of diagnosis, prior to samples arriving at the diagnostic laboratory [15,32]....

    [...]

Journal ArticleDOI
TL;DR: Spirochaetes morphologically similar to those in the inoculum were observed in small numbers in the faeces prior to inoculation and in large numbers in affected pigs after the onset of clinical signs.

239 citations

Journal ArticleDOI
TL;DR: A sensitive assay based on amplification of a 319-bp DNA fragment of the intracellular bacterium of swine proliferative enteritis was developed for the detection of the organism in the feces ofSwine.
Abstract: A sensitive assay based on amplification of a 319-bp DNA fragment of the intracellular bacterium of swine proliferative enteritis was developed for the detection of the organism in the feces of swine. A vernacular name, ileal symbiont intracellularis (IS-intracellularis), has recently been published for the intracellular bacterium, which was formerly known as a Campylobacter-like organism (C.J. Gebhart, S.M. Barnes, S. McOrist, G.F. Lin, and G.H.K. Larson, Int. J. Syst. Bacteriol. 43:533-538, 1993). As few as 10(1) IS-intracellularis organisms purified from intestinal mucosa, or 10(3) IS-intracellularis per g of feces, were detected. No amplification product was produced from a polymerase chain reaction performed on DNA extracted from the feces of healthy pigs. A 319-bp DNA fragment specific for IS-intracellularis was produced on amplification of DNA from the feces of pigs with experimental and naturally occurring proliferative enteritis. Images

201 citations


"Confirmation that "Brachyspira hamp..." refers background in this paper

  • ...Sections of small and large intestines tested negative for Salmonella (culture on brilliant green agar following enrichment with selenite broth), Lawsonia intracellularis (PCR) [17], and porcine circovirus type 2 (PCV2, immunohistochemistry) [18] at the Prairie Diagnostic Service Inc....

    [...]

Related Papers (5)