scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Conformational flexibility and binding energy profile of c-Abl tyrosine kinase complexed with Imatinib: an insight from MD study

21 Oct 2011-Molecular Simulation (Taylor & Francis Group)-Vol. 37, Iss: 14, pp 1151-1163
TL;DR: The conformational flexibility of c-Abl tyrosine kinase complexed with Imatinib (STI), in the presence of TIP3P water in physiological conditions at neutral pH is studied to suggest that the flexibility of activation loop is responsible to facilitate the nucleotide binding and release.
Abstract: Structural biology of kinase and in particular of tyrosine kinase has given detailed insights into the intrinsic flexibility of the catalytic domain and has provided a rational basis for obtaining selective inhibitors. In this paper, we have studied the conformational flexibility of c-Abl tyrosine kinase complexed with Imatinib (STI), in the presence of TIP3P water in physiological conditions at neutral pH. The conformational studies suggest that the flexibility of activation loop is responsible to facilitate the nucleotide binding and release. Owing to the conformational adaptability, adenosine triphosphate (ATP) binds at a particular site in the loop region of the tyrosine kinase. The molecular mechanics Poisson–Boltzmann surface area methods are analysed, as is a free-energy pathways method, which shows the stable binding with free energy − 6.04 kcal/mol for STI. The binding energy calculated by the Sietraj method is approximately the same as the experimental binding energy of STI with c-Abl kinase. It...
Citations
More filters
Journal ArticleDOI
TL;DR: This study has performed various molecular dynamics simulations of the trimeric DENV protein at different pH and ionic concentrations and found a remarkable increase in the stability of the complex at neutral pH (pH~7) due to the increment of sodium ions.

17 citations

References
More filters
Book ChapterDOI

[...]

01 Jan 2012

139,059 citations

Journal ArticleDOI
TL;DR: VMD is a molecular graphics program designed for the display and analysis of molecular assemblies, in particular biopolymers such as proteins and nucleic acids, which can simultaneously display any number of structures using a wide variety of rendering styles and coloring methods.

46,130 citations

Journal ArticleDOI
TL;DR: Two unusual extensions are presented: Multiscale, which adds the ability to visualize large‐scale molecular assemblies such as viral coats, and Collaboratory, which allows researchers to share a Chimera session interactively despite being at separate locales.
Abstract: The design, implementation, and capabilities of an extensible visualization system, UCSF Chimera, are discussed. Chimera is segmented into a core that provides basic services and visualization, and extensions that provide most higher level functionality. This architecture ensures that the extension mechanism satisfies the demands of outside developers who wish to incorporate new features. Two unusual extensions are presented: Multiscale, which adds the ability to visualize large-scale molecular assemblies such as viral coats, and Collaboratory, which allows researchers to share a Chimera session interactively despite being at separate locales. Other extensions include Multalign Viewer, for showing multiple sequence alignments and associated structures; ViewDock, for screening docked ligand orientations; Movie, for replaying molecular dynamics trajectories; and Volume Viewer, for display and analysis of volumetric data. A discussion of the usage of Chimera in real-world situations is given, along with anticipated future directions. Chimera includes full user documentation, is free to academic and nonprofit users, and is available for Microsoft Windows, Linux, Apple Mac OS X, SGI IRIX, and HP Tru64 Unix from http://www.cgl.ucsf.edu/chimera/.

35,698 citations


"Conformational flexibility and bind..." refers background in this paper

  • ...3 [36] and Maestro [37] graphical programs for visualisation purposes....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors compared the Bernal Fowler (BF), SPC, ST2, TIPS2, TIP3P, and TIP4P potential functions for liquid water in the NPT ensemble at 25°C and 1 atm.
Abstract: Classical Monte Carlo simulations have been carried out for liquid water in the NPT ensemble at 25 °C and 1 atm using six of the simpler intermolecular potential functions for the water dimer: Bernal–Fowler (BF), SPC, ST2, TIPS2, TIP3P, and TIP4P. Comparisons are made with experimental thermodynamic and structural data including the recent neutron diffraction results of Thiessen and Narten. The computed densities and potential energies are in reasonable accord with experiment except for the original BF model, which yields an 18% overestimate of the density and poor structural results. The TIPS2 and TIP4P potentials yield oxygen–oxygen partial structure functions in good agreement with the neutron diffraction results. The accord with the experimental OH and HH partial structure functions is poorer; however, the computed results for these functions are similar for all the potential functions. Consequently, the discrepancy may be due to the correction terms needed in processing the neutron data or to an effect uniformly neglected in the computations. Comparisons are also made for self‐diffusion coefficients obtained from molecular dynamics simulations. Overall, the SPC, ST2, TIPS2, and TIP4P models give reasonable structural and thermodynamic descriptions of liquid water and they should be useful in simulations of aqueous solutions. The simplicity of the SPC, TIPS2, and TIP4P functions is also attractive from a computational standpoint.

33,683 citations


"Conformational flexibility and bind..." refers methods in this paper

  • ...The complete system was neutralised with eight Naþ ions and immersed into the truncated octahedral shell of TIP3P [31] water of dimension extending up to 75 Å....

    [...]

  • ...The complete system was neutralised with eight Naþ ions and immersed into the truncated octahedral shell of TIP3P [31] water of dimension extending up to 75 Å....

    [...]

  • ...In this paper, we have studied the conformational flexibility of c-Abl tyrosine kinase complexed with Imatinib (STI), in the presence of TIP3P water in physiological conditions at neutral pH....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a method is described to realize coupling to an external bath with constant temperature or pressure with adjustable time constants for the coupling, which can be easily extendable to other variables and to gradients, and can be applied also to polyatomic molecules involving internal constraints.
Abstract: In molecular dynamics (MD) simulations the need often arises to maintain such parameters as temperature or pressure rather than energy and volume, or to impose gradients for studying transport properties in nonequilibrium MD A method is described to realize coupling to an external bath with constant temperature or pressure with adjustable time constants for the coupling The method is easily extendable to other variables and to gradients, and can be applied also to polyatomic molecules involving internal constraints The influence of coupling time constants on dynamical variables is evaluated A leap‐frog algorithm is presented for the general case involving constraints with coupling to both a constant temperature and a constant pressure bath

25,256 citations


"Conformational flexibility and bind..." refers background in this paper

  • ...thermostat [32] and Barendsen barostat [33] with collision frequency 2 ps and pressure relaxation time of 1 ps, respectively....

    [...]