scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Conformer-dependent vacuum ultraviolet photodynamics and chiral asymmetries in pure enantiomers of gas phase proline

20 May 2021-Vol. 4, Iss: 1, pp 1-14
TL;DR: In this paper, the conformer-specific photoelectron circular dichroism (PECD) was measured in the vacuum ultraviolet (VUV) photoionization of proline, as well as a conformerdependent cation fragmentation behavior.
Abstract: Proline is a unique amino-acid, with a secondary amine fixed within a pyrrolidine ring providing specific structural properties to proline-rich biopolymers. Gas-phase proline possesses four main H-bond stabilized conformers differing by the ring puckering and carboxylic acid orientation. The latter defines two classes of conformation, whose large ionization energy difference allows a unique conformer-class tagging via electron spectroscopy. Photoelectron circular dichroism (PECD) is an intense chiroptical effect sensitive to molecular structures, hence theorized to be highly conformation-dependent. Here, we present experimental evidence of an intense and striking conformer-specific PECD, measured in the vacuum ultraviolet (VUV) photoionization of proline, as well as a conformer-dependent cation fragmentation behavior. This finding, combined with theoretical modeling, allows a refinement of the conformational landscape and energetic ordering, that proves inaccessible to current molecular electronic structure calculations. Additionally, astrochemical implications regarding a possible link of PECD to the origin of life’s homochirality are considered in terms of plausible temperature constraints. Proline plays an important role in determining the structures of proteins and peptides, but the conformer landscape of proline is still not fully mapped. Here, the authors show the conformer-specific cation fragmentation and photoelectron circular dichroism of proline during its vacuum ultraviolet photoionization.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , a pressure-and temperature-controlled gas cell coupled with a synchrotron radiation CD spectropolarimeter was used to detect chiral amino acids in the gas phase, where any asymmetry is solely determined by the genuine electromagnetic transition moments.
Abstract: Life on Earth employs chiral amino acids in stereochemical L-form, but the cause of molecular symmetry breaking remains unknown. Chiroptical properties of amino acids - expressed in circular dichroism (CD) - have been previously investigated in solid and solution phase. However, both environments distort the intrinsic charge distribution associated with CD transitions. Here we report on CD and anisotropy spectra of amino acids recorded in the gas phase, where any asymmetry is solely determined by the genuine electromagnetic transition moments. Using a pressure- and temperature-controlled gas cell coupled to a synchrotron radiation CD spectropolarimeter, we found CD active transitions and anisotropies in the 130-280 nm range, which are rationalized by ab initio calculation. As gas phase glycine was found in a cometary coma, our data may provide insights into gas phase asymmetric photochemical reactions in the life cycle of interstellar gas and dust, at the origin of the enantiomeric selection of life's L-amino acids.

12 citations

Journal ArticleDOI
TL;DR: In this paper , a photoelectron photoion coincidence (PEPICO) spectrometer was proposed that combines high mass resolution of cations with independently adjustable velocity map imaging of both cations and electrons.
Abstract: We present a new photoelectron photoion coincidence (PEPICO) spectrometer that combines high mass resolution of cations with independently adjustable velocity map imaging of both cations and electrons. We photoionize atoms and molecules using fixed-frequency vacuum ultraviolet radiation. Mass-resolved photoelectron spectra associated with each cation's mass-to-charge ratio can be obtained by inversion of the photoelectron image. The mass-resolved photoelectron spectra enable kinetic time-resolved probing of chemical reactions with isomeric resolution using fixed-frequency radiation sources amenable to small laboratory settings. The instrument accommodates a variety of sample delivery sources to explore a broad range of physical chemistry. To demonstrate the time-resolved capabilities of the instrument, we study the 193 nm photodissociation of SO2 via the C̃(1B2) ← X̃(1A1) transition. In addition to the well-documented O(3Pj) + SO(3Σ-) channel, we observe direct evidence for a small yield of S(3Pj) + O2(3Σg-) as a primary photodissociation product channel, which may impact sulfur mass-independent fractionation chemistry.

7 citations

Journal ArticleDOI
TL;DR: In this paper , the angular distribution of photoelectrons is demonstrated to be sensitive to the substitution of protons by cesium ions, which is accompanied by a conformational change.
Abstract: Many sophisticated approaches for analyzing properties of chiral matter have been developed in recent years. But in general, the available chiroptical methods are limited to either solvated or small gaseous molecules. Studying the chirality of large biopolymers in the gas phase, including aspects of the secondary structure, becomes accessible by combining the electrospray ionization technique with chiroptical detection protocols. Here, laser-induced photodetachment from gramicidin anions, a peptide consisting of 15 amino acids has been investigated. The angular distribution of photoelectrons is demonstrated to be sensitive to the substitution of protons by cesium ions, which is accompanied by a conformational change. The photoelectron circular dichroism (PECD) is -0.5% for bare gramicidin, whereas gramicidin with several Cs+ ions attached exhibits a PECD of +0.5%. The results are complemented and supported by ion mobility studies. The presented approach offers the prospect of studying chirality and the secondary structure of various biopolymers.

7 citations

Journal ArticleDOI
TL;DR: In this article , the authors demonstrate the sensitivity of valence-shell photoelectron circular dichroism (PECD) to both chirality and subtle conformational changes.
Abstract: Chirality plays a fundamental role in the molecular recognition processes. Molecular flexibility is also crucial in molecular recognition, allowing the interacting molecules to adjust their structures and hence optimize the interaction. Methods probing simultaneously chirality and molecular conformation are therefore crucially needed. Taking advantage of a possible control in the gas phase of the conformational distribution between the equatorial and axial conformers resulting from a ring inversion in jet-cooled 1-indanol, we demonstrate here the sensitivity of valence-shell photoelectron circular dichroism (PECD) to both chirality and subtle conformational changes, in a case where the photoelectron spectra of the two conformers are identical. For the highest occupied orbital, we observe a dramatic inversion of the PECD-induced photoelectron asymmetries, while the photoionization cross-section and usual anisotropy (β) parameter are completely insensitive to conformational isomerism. Such a sensitivity is a major asset for the ongoing developments of PECD-based techniques as a sensitive chiral (bio)chemical analytical tool in the gas phase.

6 citations

Journal ArticleDOI
TL;DR: In this paper, a combined theoretical and experimental investigation of gas-phase valence-shell photoelectron circular dichroism (PECD) on the challenging open-shell ruthenium(III)-tris-(acetylacetonato) complex, Ru(acac)3, was presented.
Abstract: Chiral transition-metal complexes are of interest in many fields ranging from asymmetric catalysis and molecular materials science to optoelectronic applications or fundamental physics including parity violation effects. We present here a combined theoretical and experimental investigation of gas-phase valence-shell photoelectron circular dichroism (PECD) on the challenging open-shell ruthenium(III)-tris-(acetylacetonato) complex, Ru(acac)3. Enantiomerically pure Δ- or Λ-Ru(acac)3, characterized by electronic circular dichroism (ECD), were vaporized and adiabatically expanded to produce a supersonic beam and photoionized by circularly-polarized VUV light from the DESIRS beamline at Synchrotron SOLEIL. Photoelectron spectroscopy (PES) and PECD experiments were conducted using a double imaging electron/ion coincidence spectrometer, and compared to density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The open-shell character of Ru(acac)3, which is not taken into account in our DFT approach, is expected to give rise to a wide multiplet structure, which is not resolved in our PES signals but whose presence might be inferred from the additional striking features observed in the PECD curves. Nevertheless, the DFT-based assignment of the electronic bands leads to the characterisation of the ionized orbitals. In line with other recent works, the results confirm that PECD persists independently on the localization and/or on the achiral or chiral nature of the initial orbital, but is rather a probe of the molecular potential as a whole. Overall, the measured PECD signals on Ru(acac)3, a system exhibiting D3 propeller-type chirality, are of similar magnitude compared to those on asymmetric-carbon-based chiral organic molecules which constitute the vast majority of species investigated so far, thus suggesting that PECD is a universal mechanism, inherent to any type of chirality.

6 citations

References
More filters
Book
01 Jan 1951

2,053 citations

BookDOI
08 Aug 1996
TL;DR: In this paper, the authors present a theory of Unimolecular Decomposition -the Statistical Approach and Dynamical Approaches to Product Energy Distributions for Small and Large Clusters.
Abstract: 1 Introduction 2 Vibrational/Rotational Energy Levels 3 Potential Energy Surfaces 4 State Preparation and Intramolecular Vibrational Energy Redistribution 5 Experimental Methods in Unimolecular Dissociation Studies 6 Theory of Unimolecular Decomposition - The Statistical Approach 8 Dynamical Approaches 9 Product Energy Distributions 10 The Dissociation fo Small and Large Clusters Appendix

1,127 citations

Journal ArticleDOI
TL;DR: In this article, a grid of radiation transfer models of axisymmetric young stellar objects (YSOs) is presented, covering a wide range of stellar masses (from 0.1 to 50 M) and evolutionary stages (from the early envelope infall stage to the late disk-only stage).
Abstract: We present a grid of radiation transfer models of axisymmetric young stellar objects (YSOs), covering a wide range of stellar masses (from 0.1 to 50 M☉) and evolutionary stages (from the early envelope infall stage to the late disk-only stage). The grid consists of 20,000 YSO models, with spectral energy distributions (SEDs) and polarization spectra computed at 10 viewing angles for each model, resulting in a total of 200,000 SEDs. We have made a careful assessment of the theoretical and observational constraints on the physical conditions of disks and envelopes in YSOs and have attempted to fully span the corresponding regions in parameter space. These models are publicly available on a dedicated Web server. In this paper we summarize the main features of our models, as well as the range of parameters explored. Having a large grid covering reasonable regions of parameter space allows us to shed light on many trends in near- and mid-IR observations of YSOs (such as changes in the spectral indices and colors of their SEDs), linking them with physical parameters (such as disk and infalling envelope parameters). In particular, we examine the dependence of the spectral indices of the model SEDs on envelope accretion rate and disk mass. In addition, we show variations of spectral indices with stellar temperature, disk inner radius, and disk flaring power for a subset of disk-only models. We also examine how changing the wavelength range of data used to calculate spectral indices affects their values. We show sample color-color plots of the entire grid as well as simulated clusters at various distances with typical Spitzer sensitivities. We find that young embedded sources generally occupy a large region of color-color space due to inclination and stellar temperature effects. Disk sources occupy a smaller region of color-color space but overlap substantially with the region occupied by embedded sources, especially in the near- and mid-IR. We identify regions in color-color space where our models indicate that only sources at a given evolutionary stage should lie. We find that, while near-IR (such as JHK) and mid-IR (such as IRAC) fluxes are useful in discriminating between stars and YSOs, and are useful for identifying very young sources, the addition of longer wavelength data such as MIPS 24 μm is extremely valuable for determining the evolutionary stage of YSOs.

992 citations

Journal ArticleDOI
28 Dec 1995-Nature
TL;DR: In this paper, it was shown that autocatalysis in a chemical reaction can indeed enhance a small initial enantiomeric excess of a chiral molecule, and that the resulting chirality imbalance can become overwhelming.
Abstract: THE homochirality of natural amino acids and sugars remains a puzzle for theories of the chemical origin of life1–18. In 1953 Frank7 proposed a reaction scheme by which a combination of autocatalysis and inhibition in a system of replicating chiral molecules can allow small random fluctuations in an initially racemic mixture to tip the balance to yield almost exclusively one enantiomer. Here we show experimentally that autocatalysis in a chemical reaction can indeed enhance a small initial enantiomeric excess of a chiral molecule. When a 5-pyrimidyl alkanol with a small (2%) enantiomeric excess is treated with diisopropylzinc and pyrimidine-5-car-boxaldehyde, it undergoes an autocatalytic reaction to generate more of the alkanol. Because the reaction involves a chiral catalyst generated from the initial alkanol, and because the catalytic step is enantioselective, the enantiomeric excess of the product is enhanced. This process provides a mechanism by which a small initial imbalance in chirality can become overwhelming.

861 citations