scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Conjugate heat transfer and entropy generation in a cavity filled with a nanofluid-saturated porous media and heated by a triangular solid

TL;DR: In this paper, the authors investigated the entropy generation due to conjugate natural convection-conduction heat transfer in a square domain under steady-state condition, and the results showed that both the average Nusselt number and entropy generation are increasing functions of K ro while they are maxima at some critical values of D.
Abstract: Entropy generation due to conjugate natural convection–conduction heat transfer in a square domain is numerically investigated under steady-state condition. The domain composed of porous cavity heated by a triangular solid wall and saturated with a CuO–water nanofluid. Equations governing the heat transfer in the triangular solid together with the heat and nanofluid flow in the nanofluid-saturated porous medium are solved numerically using the over-successive relaxation finite-difference method. A temperature dependent thermal conductivity and modified expression for the thermal expansion of nanofluid are adopted. A new criterion for assessment of the thermal performance is proposed. The investigated parameters are the nanoparticles volume fraction φ (0–0.05), modified Rayleigh number Ra (10–1000), solid wall to base-fluid saturated porous medium thermal conductivity ratio K ro (0.44, 1, 23.8), and the triangular solid thickness D (0.1–1). The results show that both the average Nusselt number and the entropy generation are increasing functions of K ro , while they are maxima at some critical values of D . It is also found that the addition of nanoparticles increases the entropy generation. According to the new proposed criterion, the results show that the largest solid thickness ( D = 1.0) and the lower wall thermal conductivity ratio manifest better thermal performance.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a comprehensive review is conducted on the simultaneous application of nanofluids and porous media for heat transfer enhancement purposes in thermal systems with different structures, flow regimes, and boundary conditions.
Abstract: Researchers in heat transfer field always attempt to find new solutions to optimize the performance of energy devices through heat transfer enhancement. Among various methods which are implemented to reinforce the thermal performance of energy systems, one is the dispersion of solid nanoparticles in common working fluids such as water. The suspension is called nanofluid. On the other hand, utilizing porous media in heat exchangers is another technique to augment of thermal efficiency. Porous media by providing high surface area contact will ameliorate heat transfer rate in ducts. In the present work, a comprehensive review is conducted on the simultaneous application of nanofluids and porous media for heat transfer enhancement purposes in thermal systems with different structures, flow regimes, and boundary conditions.

333 citations


Additional excerpts

  • ...[43] Triangular solid CuO/water Tiwari and...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the performance of LHTESS was improved by adding CuO nanoparticles in to pure PCM, which has low thermal conductivity, and it can be concluded that highest rate of solidification is obtained for dp = 40nm.
Abstract: In order to saving thermal energy, latent heat thermal energy storage systems (LHTESS) can be utilized. Common phase change material (PCM) has low thermal conductivity. In this paper, CuO nanoparticles have been used to enhance the performance of LHTESS. CuO–water nanofluid properties are estimated by means of KKL. This unsteady process has been simulated by Finite element method. Results prove that solidification process is accelerated by adding CuO nanoparticles in to pure PCM. As number of undulations increases average temperature and total energy profiles reduce while solid fraction profile increases. Also, it can be concluded that highest rate of solidification is obtained for dp = 40 nm.

326 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a brief review of researches on nanofluid flow and heat transfer via semi-analytical and numerical methods and show that the Nusselt number is an increasing function of nanoparticle volume fraction.
Abstract: The use of additives in the base fluid like water or ethylene glycol is one of the techniques applied to augment the heat transfer. Newly an innovative nanometer sized particles have been dispersed in the base fluid in heat transfer fluids. The fluids containing the solid nanometer size particle dispersion are called ‘nanofluids’. Two main categories were discussed in detail as the single-phase modeling which the combination of nanoparticle and base fluid is considered as a single-phase mixture with steady properties and the two-phase modeling in which the nanoparticle properties and behaviors are considered separately from the base fluid properties and behaviors. Both single phase and two phase models have been presented in this paper. This paper intends to provide a brief review of researches on nanofluid flow and heat transfer via semi analytical and numerical methods. It was also found that Nusselt number is an increasing function of nanoparticle volume fraction, Rayleigh number and Reynolds number, while it is a decreasing function of Hartmann number.

308 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of the variation of key parameters, such as the volume fraction of nanoparticles, Rayleigh number, and the ratio between thermal conductivity of the wall and the thermal conductivities of the hybrid nanofluid (Rk), is studied.
Abstract: The conjugate natural convection of a new type of hybrid nanofluid (Ag–MgO/water hybrid nanofluid) inside a square cavity is addressed. A thick layer of conductive solid is considered over the hot wall. The governing partial differential equations (PDEs) representing the physical model of the natural convection of the hybrid nanofluid along with the boundary conditions are reported. The thermophysical properties of the nanofluid are directly calculated using experimental data. The governing PDEs are transformed into a dimensionless form and solved by the finite element method. The effect of the variation of key parameters, such as the volume fraction of nanoparticles, Rayleigh number, and the ratio between the thermal conductivity of the wall and the thermal conductivity of the hybrid nanofluid (Rk), is studied. Furthermore, the effects of the key parameters are investigated on the temperature distribution, local Nusselt number, and average Nusselt number. The results of this study show that the heat transfer rate increases by adding hybrid nanoparticles for a conduction-dominant regime (low Rayleigh number). The heat transfer rate is an increasing function of both the Rayleigh number and the thermal conductivity ratio (Rk). In the case of a convective-dominant flow (high Rayleigh number flow) and an excellent thermally conductive wall, the local Nusselt number at the surface of the conjugate wall decreases substantially by moving from the bottom of the cavity toward the top.

202 citations

Journal ArticleDOI
TL;DR: In this article, the effect of magnetic field and internal heat generation on the free convection flow in a rectangular cavity was investigated, where the cavity is filled with a porous medium saturated with Cupper Cu-water nanofluid.
Abstract: The present study investigates the effect of magnetic field and internal heat generation on the free convection flow in a rectangular cavity. Here, the cavity is filled with a porous medium saturated with Cupper Cu–water nanofluid. The governing equations are transformed into dimensionless form in stream function and solved numerically using finite difference method. The computations were carried out for a wide range of the Hartmann number, solid volume fraction and magnetic field parameter. Results have been presented in terms of the isotherms, streamlines, average Nusselt number, velocity and temperature profiles. The obtained results are compared with the previous published work and it showed a good agreement. It is found that the average Nusselt number decreases as the Hartmann number or the solid volume fraction increases, while the opposite behavior occurs with the increase in magnetic field inclination angle. Moreover, the increase in the Hartmann number leads to decrease the maximum value of stream function, while it enhances the maximum temperature.

186 citations

References
More filters
01 Jan 1995

7,263 citations


"Conjugate heat transfer and entropy..." refers background in this paper

  • ...[2] Choi SUS....

    [...]

  • ...Nanofluids, a name conceived by Choi [2], in rgonne National laboratory, are fluids consisting of solid nanopar- icles with size less than 100 nm suspended with solid volume fracion typically less than 4%....

    [...]

  • ...Nanofluids, a name conceived by Choi [2], in rgonne National laboratory, are fluids consisting of solid nanoparicles with size less than 100 nm suspended with solid volume fracion typically less than 4%....

    [...]

  • ...23] Chon CH, Kihm KD, Lee SP, Choi SUS....

    [...]

Book
01 Jan 1992
TL;DR: In this paper, an introduction to convection in porous media assumes the reader is familiar with basic fluid mechanics and heat transfer, going on to cover insulation of buildings, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering and the storage of heat-generating materials like grain and coal.
Abstract: This introduction to convection in porous media assumes the reader is familiar with basic fluid mechanics and heat transfer, going on to cover insulation of buildings, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering and the storage of heat-generating materials like grain and coal. Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches. The book is intended to be used as a reference, a tutorial work or a textbook for graduates.

5,570 citations


"Conjugate heat transfer and entropy..." refers background in this paper

  • ...In the present study, this assumption is relied on the fact that there is no large temperature difference between the nanofluid and the solid matrix [18], and no sufficiently large velocities [19]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, an expression for the viscosity of solutions and suspensions of finite concentration is derived by considering the effect of the addition of one solute-molecule to an existing solution, which is considered as a continuous medium.
Abstract: An expression for the viscosity of solutions and suspensions of finite concentration is derived by considering the effect of the addition of one solute‐molecule to an existing solution, which is considered as a continuous medium.

3,724 citations

Journal ArticleDOI
TL;DR: In this article, a model is developed to analyze heat transfer performance of nanofluids inside an enclosure taking into account the solid particle dispersion, where the transport equations are solved numerically using the finite-volume approach along with the alternating direct implicit procedure.
Abstract: Heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids is investigated for various pertinent parameters. A model is developed to analyze heat transfer performance of nanofluids inside an enclosure taking into account the solid particle dispersion. The transport equations are solved numerically using the finite-volume approach along with the alternating direct implicit procedure. Comparisons with previously published work on the basis of special cases are performed and found to be in excellent agreement. The effect of suspended ultrafine metallic nanoparticles on the fluid flow and heat transfer processes within the enclosure is analyzed and effective thermal conductivity enhancement maps are developed for various controlling parameters. In addition, an analysis of variants based on the thermophysical properties of nanofluid is developed and presented. It is shown that the variances within different models have substantial effects on the results. Finally, a heat transfer correlation of the average Nusselt number for various Grashof numbers and volume fractions is presented.

2,560 citations

Journal ArticleDOI
TL;DR: A review on fluid flow and heat transfer characteristics of nanofluids in forced and free convection flows is presented in this article, where the authors identify opportunities for future research.
Abstract: Research in convective heat transfer using suspensions of nanometer-sized solid particles in base liquids started only over the past decade Recent investigations on nanofluids, as such suspensions are often called, indicate that the suspended nanoparticles markedly change the transport properties and heat transfer characteristics of the suspension This review summarizes recent research on fluid flow and heat transfer characteristics of nanofluids in forced and free convection flows and identifies opportunities for future research

1,988 citations