scispace - formally typeset
Open AccessJournal ArticleDOI

Consensus problems in networks of agents with switching topology and time-delays

Reads0
Chats0
TLDR
A distinctive feature of this work is to address consensus problems for networks with directed information flow by establishing a direct connection between the algebraic connectivity of the network and the performance of a linear consensus protocol.
Abstract
In this paper, we discuss consensus problems for networks of dynamic agents with fixed and switching topologies. We analyze three cases: 1) directed networks with fixed topology; 2) directed networks with switching topology; and 3) undirected networks with communication time-delays and fixed topology. We introduce two consensus protocols for networks with and without time-delays and provide a convergence analysis in all three cases. We establish a direct connection between the algebraic connectivity (or Fiedler eigenvalue) of the network and the performance (or negotiation speed) of a linear consensus protocol. This required the generalization of the notion of algebraic connectivity of undirected graphs to digraphs. It turns out that balanced digraphs play a key role in addressing average-consensus problems. We introduce disagreement functions for convergence analysis of consensus protocols. A disagreement function is a Lyapunov function for the disagreement network dynamics. We proposed a simple disagreement function that is a common Lyapunov function for the disagreement dynamics of a directed network with switching topology. A distinctive feature of this work is to address consensus problems for networks with directed information flow. We provide analytical tools that rely on algebraic graph theory, matrix theory, and control theory. Simulations are provided that demonstrate the effectiveness of our theoretical results.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Consensus and Cooperation in Networked Multi-Agent Systems

TL;DR: A theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees is provided.
Journal ArticleDOI

Consensus seeking in multiagent systems under dynamically changing interaction topologies

TL;DR: It is shown that information consensus under dynamically changing interaction topologies can be achieved asymptotically if the union of the directed interaction graphs have a spanning tree frequently enough as the system evolves.
Journal ArticleDOI

Flocking for multi-agent dynamic systems: algorithms and theory

TL;DR: A theoretical framework for design and analysis of distributed flocking algorithms, and shows that migration of flocks can be performed using a peer-to-peer network of agents, i.e., "flocks need no leaders."
Journal ArticleDOI

Distributed Subgradient Methods for Multi-Agent Optimization

TL;DR: The authors' convergence rate results explicitly characterize the tradeoff between a desired accuracy of the generated approximate optimal solutions and the number of iterations needed to achieve the accuracy.
Journal ArticleDOI

Information consensus in multivehicle cooperative control

TL;DR: Theoretical results regarding consensus-seeking under both time invariant and dynamically changing communication topologies are summarized in this paper, where several specific applications of consensus algorithms to multivehicle coordination are described.
References
More filters
Book

Matrix Analysis

TL;DR: In this article, the authors present results of both classic and recent matrix analyses using canonical forms as a unifying theme, and demonstrate their importance in a variety of applications, such as linear algebra and matrix theory.
Book

Algebraic Graph Theory

TL;DR: The Laplacian of a Graph and Cuts and Flows are compared to the Rank Polynomial.
Journal ArticleDOI

Coordination of groups of mobile autonomous agents using nearest neighbor rules

TL;DR: A theoretical explanation for the observed behavior of the Vicsek model, which proves to be a graphic example of a switched linear system which is stable, but for which there does not exist a common quadratic Lyapunov function.
Journal ArticleDOI

Exploring complex networks

TL;DR: This work aims to understand how an enormous network of interacting dynamical systems — be they neurons, power stations or lasers — will behave collectively, given their individual dynamics and coupling architecture.
Proceedings ArticleDOI

Flocks, herds and schools: A distributed behavioral model

TL;DR: In this article, an approach based on simulation as an alternative to scripting the paths of each bird individually is explored, with the simulated birds being the particles and the aggregate motion of the simulated flock is created by a distributed behavioral model much like that at work in a natural flock; the birds choose their own course.
Related Papers (5)