scispace - formally typeset
Search or ask a question
Book ChapterDOI

Conservation agriculture, improving soil quality for sustainable production systems?

TL;DR: In this article, a comparative soil quality evaluation is performed in which the performance of the system is determined in relation to alternatives, and the results show that the effect of a reduction in tillage on the variation in total porosity with depth may be related to differences in traffic on different sites, or on soil quality at the time tillage was reduced or stopped.
Abstract: Conservation agriculture has been proposed as a widely adapted set of management principles that can assure more sustainable agricultural production. Conservation agriculture removes the emphasis from the tillage component alone and addresses a more enhanced concept of the complete agricultural system. Applying conservation agriculture essentially means altering literally generations of traditional farming practices and implement use. Within the framework of agricultural production, high soil quality equates to the ability of the soil to maintain a high productivity without significant soil or environmental degradation. A comparative soil quality evaluation is one in which the performance of the system is determined in relation to alternatives. Inconsistent effects of a reduction in tillage on the variation in total porosity with depth may be related to differences in traffic on different sites, or on soil quality at the time tillage was reduced or stopped.
Citations
More filters
Journal ArticleDOI
TL;DR: The potential and limitations of conservation agriculture for low productivity, small-scale farming systems in Sub Saharan Africa and South Asia is discussed in this article. But, the authors highlight some research priorities for ecosystem services in conservational agriculture.

658 citations

Journal ArticleDOI
TL;DR: In this paper, the potential for climate change mitigation through soil carbon sequestration that is possible from a change to no-till agriculture has been widely overstated, arguing that the potential of climate adaptation through carbon sequestering is limited.
Abstract: No-till agriculture is generally considered good for soils, and probably also beneficial in relation to climate change adaptation. However, this Perspective argues that the potential for climate change mitigation through soil carbon sequestration that is possible from a change to no-till agriculture has been widely overstated.

616 citations

Journal ArticleDOI
TL;DR: The authors conducted a meta-analysis to evaluate the influence of various crop and environmental variables on no-till relative to conventional tillage yields using data obtained from peer-reviewed publications (678 studies with 6005 paired observations, representing 50 crops and 63 countries).

541 citations

Journal ArticleDOI
TL;DR: Crop development should favour spike fertility to maximize harvest index so phenology must be tailored to different photoperiods, and sensitivity to unpredictable weather must be modulated to reduce conservative responses that reduce harvest index.
Abstract: Wheat provides 20% of calories and protein consumed by humans. Recent genetic gains are <1% per annum (p.a.), insufficient to meet future demand. The Wheat Yield Consortium brings expertise in photosynthesis, crop adaptation and genetics to a common breeding platform. Theory suggest radiation use efficiency (RUE) of wheat could be increased ∼50%; strategies include modifying specificity, catalytic rate and regulation of Rubisco, up-regulating Calvin cycle enzymes, introducing chloroplast CO2 concentrating mechanisms, optimizing light and N distribution of canopies while minimizing photoinhibition, and increasing spike photosynthesis. Maximum yield expression will also require dynamic optimization of source: sink so that dry matter partitioning to reproductive structures is not at the cost of the roots, stems and leaves needed to maintain physiological and structural integrity. Crop development should favour spike fertility to maximize harvest index so phenology must be tailored to different photoperiods, and sensitivity to unpredictable weather must be modulated to reduce conservative responses that reduce harvest index. Strategic crossing of complementary physiological traits will be augmented with wide crossing, while genome-wide selection and high throughput phenotyping and genotyping will increase efficiency of progeny screening. To ensure investment in breeding achieves agronomic impact, sustainable crop management must also be promoted through crop improvement networks.

446 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed crop residue management practices, mainly surface retention, incorporation or removal, describing their advantages and limitations in cereal-based agroecosystems in developing countries.

374 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the effectiveness of various binding agents at different stages in the structural organization of aggregates is described and forms the basis of a model which illustrates the architecture of an aggregate.
Abstract: Summary The water-stability of aggregates in many soils is shown to depend on organic materials. The organic binding agents have been classified into (a) transient, mainly polysaccharides, (b), temporary, roots and fungal hyphae, and (c) persistent, resistant aromatic components associated with polyvalent metal cations, and strongly sorbed polymers. The effectiveness of various binding agents at different stages in the structural organization of aggregates is described and forms the basis of a model which illustrates the architecture of an aggregate. Roots and hyphae stabilize macro-aggregates, defined as > 250 μm diameter; consequently, macroaggregation is controlled by soil management (i.e. crop rotations), as management influences the growth of plant roots, and the oxidation of organic carbon. The water-stability of micro-aggregates depends on the persistent organic binding agents and appears to be a characteristic of the soil, independent of management.

5,389 citations

Journal ArticleDOI
TL;DR: The relationship between soil structure and the ability of soil to stabilize soil organic matter (SOM) is a key element in soil C dynamics that has either been overlooked or treated in a cursory fashion when developing SOM models as discussed by the authors.
Abstract: The relationship between soil structure and the ability of soil to stabilize soil organic matter (SOM) is a key element in soil C dynamics that has either been overlooked or treated in a cursory fashion when developing SOM models. The purpose of this paper is to review current knowledge of SOM dynamics within the framework of a newly proposed soil C saturation concept. Initially, we distinguish SOM that is protected against decomposition by various mechanisms from that which is not protected from decomposition. Methods of quantification and characteristics of three SOM pools defined as protected are discussed. Soil organic matter can be: (1) physically stabilized, or protected from decomposition, through microaggregation, or (2) intimate association with silt and clay particles, and (3) can be biochemically stabilized through the formation of recalcitrant SOM compounds. In addition to behavior of each SOM pool, we discuss implications of changes in land management on processes by which SOM compounds undergo protection and release. The characteristics and responses to changes in land use or land management are described for the light fraction (LF) and particulate organic matter (POM). We defined the LF and POM not occluded within microaggregates (53–250 μm sized aggregates as unprotected. Our conclusions are illustrated in a new conceptual SOM model that differs from most SOM models in that the model state variables are measurable SOM pools. We suggest that physicochemical characteristics inherent to soils define the maximum protective capacity of these pools, which limits increases in SOM (i.e. C sequestration) with increased organic residue inputs.

3,301 citations

Journal ArticleDOI
01 Jan 2005-Geoderma
TL;DR: In this paper, soil organic carbon (SOC), biota, ionic bridging, clay and carbonates are associated with aggregation by rearrangement, flocculation and cementation.

3,241 citations

Journal ArticleDOI
TL;DR: In this article, Tisdall and Oades [J. Soil Sci. 62 (1982) 141] coined the aggregate hierarchy concept describing a spatial scale dependence of mechanisms involved in micro- and macroaggregate formation.
Abstract: Since the 1900s, the link between soil biotic activity, soil organic matter (SOM) decomposition and stabilization, and soil aggregate dynamics has been recognized and intensively been studied. By 1950, many studies had, mostly qualitatively, investigated the influence of the five major factors (i.e. soil fauna, microorganisms, roots, inorganics and physical processes) on this link. After 1950, four theoretical mile-stones related to this subject were realized. The first one was when Emerson [Nature 183 (1959) 538] proposed a model of a soil crumb consisting of domains of oriented clay and quartz particles. Next, Edwards and Bremner [J. Soil Sci. 18 (1967) 64] formulated a theory in which the solid-phase reaction between clay minerals, polyvalent cations and SOM is the main process leading to microaggregate formation. Based on this concept, Tisdall and Oades [J. Soil Sci. 62 (1982) 141] coined the aggregate hierarchy concept describing a spatial scale dependence of mechanisms involved in micro- and macroaggregate formation. Oades [Plant Soil 76 (1984) 319] suggested a small, but very important, modification to the aggregate hierarchy concept by theorizing the formation of microaggregates within macroaggregates. Recent research on aggregate formation and SOM stabilization extensively corroborate this modification and use it as the base for furthering the understanding of SOM dynamics. The major outcomes of adopting this modification are: (1) microaggregates, rather than macroaggregates protect SOM in the long term; and (2) macroaggregate turnover is a crucial process influencing the stabilization of SOM. Reviewing the progress made over the last 50 years in this area of research reveals that still very few studies are quantitative and/or consider interactive effects between the five factors. The quantification of these relationships is clearly needed to improve our ability to predict changes in soil ecosystems due to management and global change. This quantification can greatly benefit from viewing aggregates as dynamic rather than static entities and relating aggregate measurements with 2D and 3D quantitative spatial information.

3,134 citations

Journal ArticleDOI
24 Feb 1995-Science
TL;DR: With the addition of a quarter of a million people each day, the world population's food demand is increasing at a time when per capita food productivity is beginning to decline.
Abstract: Soil erosion is a major environmental threat to the sustainability and productive capacity of agriculture. During the last 40 years, nearly one-third of the world's arable land has been lost by erosion and continues to be lost at a rate of more than 10 million hectares per year. With the addition of a quarter of a million people each day, the world population's food demand is increasing at a time when per capita food productivity is beginning to decline.

2,589 citations