scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Constant boost control of the Z-source inverter to minimize current ripple and voltage stress

TL;DR: In this article, the authors proposed two constant boost control methods for the Z-source inverter, which can obtain maximum voltage gain at any given modulation index without producing any low-frequency ripple that is related to the output frequency and minimize the voltage stress at the same time.
Abstract: This paper proposes two constant boost-control methods for the Z-source inverter, which can obtain maximum voltage gain at any given modulation index without producing any low-frequency ripple that is related to the output frequency and minimize the voltage stress at the same time. Thus, the Z-network requirement will be independent of the output frequency and determined only by the switching frequency. The relationship of voltage gain to modulation index is analyzed in detail and verified by simulation and experiments.
Citations
More filters
Journal ArticleDOI
TL;DR: This review paper is the first of its kind with the aim of providing a “one-stop” information source and a selection guide on impedance-source networks for power conversion for researchers, designers, and application engineers.
Abstract: Impedance networks cover the entire of electric power conversion from dc (converter, rectifier), ac (inverter), to phase and frequency conversion (ac-ac) in a wide range of applications. Various converter topologies have been reported in the literature to overcome the limitations and problems of the traditional voltage source, current source as well as various classical buck-boost, unidirectional, and bidirectional converter topologies. Proper implementation of the impedance-source network with appropriate switching configurations and topologies reduces the number of power conversion stages in the system power chain, which may improve the reliability and performance of the power system. The first part of this paper provides a comprehensive review of the various impedance-source-networks-based power converters and discusses the main topologies from an application point of view. This review paper is the first of its kind with the aim of providing a “one-stop” information source and a selection guide on impedance-source networks for power conversion for researchers, designers, and application engineers. A comprehensive review of various modeling, control, and modulation techniques for the impedance-source converters/inverters will be presented in Part II.

601 citations

Journal ArticleDOI
TL;DR: These new networks exhibit some unique advantages, such as the increased voltage gain and reduced voltage stress in the voltage-fed trans-ZSIs and the expanded motoring operation range in the current- fed trans- ZSIs, when the turns ratio of the transformer windings is over 1.
Abstract: This paper extends the impedance-source (Z-source) inverters concept to the transformer-based Z-source (trans-Z-source) inverters. The original Z-source inverter (ZSI) employs an impedance network of two inductors and two capacitors connected in a special arrangement to interface the dc source and the inverter bridge. It has buck and boost function that cannot be achieved by traditional voltage-source inverters and current-source inverters. In the proposed four trans-Z-source inverters, all the impedance networks consist of a transformer and one capacitor. While maintaining the main features of the previously presented Z-source network, the new networks exhibit some unique advantages, such as the increased voltage gain and reduced voltage stress in the voltage-fed trans-ZSIs and the expanded motoring operation range in the current-fed trans-ZSIs, when the turns ratio of the transformer windings is over 1. Simulation and experimental results of the voltage-fed and the current-fed trans-ZSIs are provided to verify the analysis.

450 citations

Journal ArticleDOI
TL;DR: In this paper, three different inverters: conventional PWM, dc-dc boosted PWM and Z-source inverter were investigated and compared for fuel cell vehicle application, and an example of the total switching device power, requirement of passive components, the constant power speed ratio, and the efficiencies of the different in-vivo inverters for fuelcell vehicle powered by the same fuel cell were conducted.
Abstract: In this paper, three different inverters: conventional pulsewidth modulation (PWM) inverter, dc-dc boosted PWM inverter, and Z-source inverter were investigated and compared for fuel cell vehicle application. Total switching device power, passive components requirement, and constant power speed ratio of each of these inverters were calculated. For purposes of comparison, an example of the total switching device power, requirement of passive components, the constant power speed ratio, and the efficiencies of the different inverters for fuel cell vehicle powered by the same fuel cell were conducted. The comparisons show that the Z-source inverter is very promising in applications when the boost ratio is low (1-2).

430 citations


Additional excerpts

  • ...The inductor current ripple in the -source inverter using maximum constant boost control [ 7 ] is...

    [...]

  • ...With the control method presented in [ 7 ], , and can be expressed as...

    [...]

  • ...The -source inverter is controlled with maximum constant boost control with modified PWM scheme [ 7 ], [13]....

    [...]

  • ...shoot through duty ratio with the restriction to keep the voltage across the switches not to exceed its limit [ 7 ]....

    [...]

  • ...For the -source inverter, the modulation index used to boost the voltage is determined by [ 7 ]...

    [...]

Journal ArticleDOI
TL;DR: In this article, a Z-source inverter is used to control power from the fuel cell, power to the motor, and state of charge (SOC) of the battery for fuel cell-battery hybrid electric vehicles (FCHEV).
Abstract: This paper presents a Z-source inverter control strategy used to control power from the fuel cell, power to the motor, and state of charge (SOC) of the battery for fuel cell (FC)-battery hybrid electric vehicles (FCHEV). Traditional pulsewidth modulation inverter always requires an extra dc/dc converter to interface the battery in FCHEVs. The Z-source inverter utilizes an exclusive Z-source (LC) network to link the main inverter circuit to the FC (or any dc power source). By substituting one of the capacitors in the Z-source with a battery and controlling the shoot through duty ratio and modulation index independently, one is able to control the FC power, output power, and SOC of the battery at the same time. These facts make the Z-source inverter highly desirable for use in FCHEVs, as the cost and complexity is greatly reduced when compared to traditional inverters. These new concepts will be demonstrated by simulation and experimental results

365 citations


Cites methods from "Constant boost control of the Z-sou..."

  • ...” The PWM scheme used can be found in [9] and [16]....

    [...]

  • ...5-Ah lithium-ion battery with a nominal voltage of 330 V, switching frequency of 10 kHz, and using constant boost control with third harmonic injection [9], [16]....

    [...]

Journal ArticleDOI
TL;DR: Detailed modeling and control issues of the qZSI used for distributed generation (DG), such as PV or fuel cell power conditioning, are addressed and constant capacitor voltage control method is proposed in a two-stage control manner.
Abstract: The voltage-fed Z-source inverter/quasi-Z-source inverter (qZSI) has been presented suitable for photovoltaic (PV) applications mainly because of its single-stage buck and boost capability and improved reliability. This paper further addresses detailed modeling and control issues of the qZSI used for distributed generation (DG), such as PV or fuel cell power conditioning. The dynamical characteristics of the qZSI network are first investigated by small-signal analysis. Based on the dynamic model, stand-alone operation and grid-connected operation with closed-loop control methods are carried out, which are the two necessary operation modes of DG in distributed power grids. Due to the mutual limitation between the modulation index and shoot-through duty ratio of qZSI, constant capacitor voltage control method is proposed in a two-stage control manner. Minimum switching stress on devices can be achieved by choosing a proper capacitor voltage reference. Experimental results are presented for validation of the theoretical analysis and controller design.

362 citations


Cites background or methods from "Constant boost control of the Z-sou..."

  • ...For the voltage-fedtype ZSI (abbreviated as ZSI), voltage boost methods based on pulsewidth modulation (PWM) have been first investigated as simple boost control, maximum boost control, and maximum constant boost control [1]–[3]....

    [...]

  • ...Thus, (7), (8), or (9) has to be yielded according to the boost method engaged [1]–[3]...

    [...]

References
More filters
Journal ArticleDOI
10 Dec 2002
TL;DR: The Z-source converter employs a unique impedance network to couple the converter main circuit to the power source, thus providing unique features that cannot be obtained in the traditional voltage-source (or voltage-fed) and current-source converters where a capacitor and inductor are used, respectively.
Abstract: This paper presents an impedance-source (or impedance-fed) power converter (abbreviated as Z-source converter) and its control method for implementing DC-to-AC, AC-to-DC, AC-to-AC, and DC-to-DC power conversion. The Z-source converter employs a unique impedance network (or circuit) to couple the converter main circuit to the power source, thus providing unique features that cannot be obtained in the traditional voltage-source (or voltage-fed) and current-source (or current-fed) converters where a capacitor and inductor are used, respectively. The Z-source converter overcomes the conceptual and theoretical barriers and limitations of the traditional voltage-source converter (abbreviated as V-source converter) and current-source converter (abbreviated as I-source converter) and provides a novel power conversion concept. The Z-source concept can be applied to all DC-to-AC, AC-to-DC, AC-to-AC, and DC-to-DC power conversion. To describe the operating principle and control, this paper focuses on an example: a Z-source inverter for DC-AC power conversion needed in fuel cell applications. Simulation and experimental results are presented to demonstrate the new features.

2,851 citations

Journal ArticleDOI
TL;DR: In this article, a maximum boost control method for the Z-source inverter is presented to produce the maximum voltage boost under a given modulation index, and the relationship of voltage gain versus modulation index and voltage stress versus voltage gain is analyzed in detail and verified by simulation and experiment.
Abstract: This paper explores control methods for the Z-source inverter and their relationships of voltage boost versus modulation index. A maximum boost control is presented to produce the maximum voltage boost (or voltage gain) under a given modulation index. The control method, relationships of voltage gain versus modulation index, and voltage stress versus voltage gain are analyzed in detail and verified by simulation and experiment.

769 citations


"Constant boost control of the Z-sou..." refers background or methods or result in this paper

  • ...The ratios of the voltage stress to the equivalent dc voltage VS/(GVdc) for the simple control, maximum boost control, and maximum constant boost control, respectively, proposed in [1] and [ 2 ], and this paper, are summarized as follows:...

    [...]

  • ...As shown in [ 2 ], this simple boost control’s obtainable shoot-through duty ratio decreases with the increase of M , and the resulting voltage stress across the devices is relatively high....

    [...]

  • ...Based on the map in Fig. 3, the shoot-through duty cycle D0 varies at six times the output frequency. As discussed in [ 2 ], the voltage boost...

    [...]

  • ...Although the presented method will increase the voltage stress across the devices by a small amount compared to the maximum boost method in [ 2 ], this method is very suitable for minimizing the Z-source network, especially in low-frequency or variable-speed-drive applications....

    [...]

  • ...To obtain the maximum voltage boost, Peng et al. [ 2 ] presented the maximum boost-control method, as shown in Fig. 3, which shoots through all zero states entirely....

    [...]

Book
25 Sep 1997
TL;DR: The second edition of Elements of Power Electronics as mentioned in this paper provides comprehensive coverage of the subject at a level suitable for undergraduate engineering students, students in advanced degree programs, and novices in the field.
Abstract: Building on the tradition of its classic first edition, the long-awaited second edition of Elements of Power Electronics provides comprehensive coverage of the subject at a level suitable for undergraduate engineering students, students in advanced degree programs, and novices in the field. It establishes a fundamental engineering basis for power electronics analysis, design, and implementation, offering broad and in-depth coverage of basic material. Streamlined throughout to reflect new innovations in technology, the second edition also features updates on renewable and alternative energy. Elements of Power Electronics features a unifying framework that includes the physical implications of circuit laws, switching circuit analysis, and the basis for converter operation and control. It discusses dc-dc, ac-dc, dc-ac, and ac-ac conversion tasks and principles of resonant converters and discontinuous converters. The text also addresses magnetic device design, thermal management and drivers for power semiconductors, control system aspects of converters, and both small-signal and geometric controls. Models for real devices and components-including capacitors, inductors, wire connections, and power semiconductors-are developed in depth, while newly expanded examples show students how to use tools like Mathcad, Matlab, and Mathematica to aid in the analysis and design of conversion circuits. Features: *More than 160 examples and 350 chapter problems support the presented concepts*An extensive Companion Website includes additional problems, laboratory materials, selected solutions for students, computer-based examples, and analysis tools for Mathcad, Matlab, and Mathematica

508 citations

BookDOI
01 Jan 1996

459 citations

Journal Article
TL;DR: In this article, the modulation requirements of a single-phase H-bridge Z-source inverter were analyzed, and the analysis was extended to cover the more complex three-phase-leg and four-phaseleg Zsource inverters with carrier-based implementation reference equations derived for all the inverters.
Abstract: Z-Source inverters have recently been proposed as an alternative power conversion concept as they have both voltage buck and boost capabilities. These inverters use a unique impedance network, coupled between the power source and converter circuit, to provide both voltage buck and boost properties, which cannot be achieved with conventional voltage-source and current-source inverters. To facilitate understanding of Z-source inverter modulation, this paper presents a detailed analysis, showing how various conventional pulse-width modulation strategies can be modified to switch a voltage-type Z-source inverter either continuously or discontinuously, while retaining all the unique harmonic performance features of these conventional modulation strategies. This paper starts by analyzing the modulation requirements of a single-phase H-bridge Z-source inverter, and subsequently extends the analysis to cover the more complex three-phase-leg and four-phase-leg Z-source inverters, with carrier-based implementation reference equations derived for all the inverters. The theoretical and modulation concepts presented have been verified both in simulation and experimentally.

362 citations