scispace - formally typeset
Open AccessJournal ArticleDOI

Constitutive nuclear lamina–genome interactions are highly conserved and associated with A/T-rich sequence

Reads0
Chats0
TLDR
Results reveal that the spatial organization of mammalian genomes is highly conserved and tightly linked to local nucleotide composition.
Abstract
In metazoans, the nuclear lamina is thought to play an important role in the spatial organization of interphase chromosomes, by providing anchoring sites for large genomic segments named lamina-associated domains (LADs). Some of these LADs are cell-type specific, while many others appear constitutively associated with the lamina. Constitutive LADs (cLADs) may contribute to a basal chromosome architecture. By comparison of mouse and human lamina interaction maps, we find that the sizes and genomic positions of cLADs are strongly conserved. Moreover, cLADs are depleted of synteny breakpoints, pointing to evolutionary selective pressure to keep cLADs intact. Paradoxically, the overall sequence conservation is low for cLADs. Instead, cLADs are universally characterized by long stretches of DNA of high A/T content. Cell-type specific LADs also tend to adhere to this "A/T rule" in embryonic stem cells, but not in differentiated cells. This suggests that the A/T rule represents a default positioning mechanism that is locally overruled during lineage commitment. Analysis of paralogs suggests that during evolution changes in A/T content have driven the relocation of genes to and from the nuclear lamina, in tight association with changes in expression level. Taken together, these results reveal that the spatial organization of mammalian genomes is highly conserved and tightly linked to local nucleotide composition.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Integrative analysis of 111 reference human epigenomes

Anshul Kundaje, +123 more
- 19 Feb 2015 - 
TL;DR: It is shown that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease.

Integrative analysis of 111 reference human epigenomes

TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Journal ArticleDOI

Nuclear lamin-A Scales With Tissue Stiffness and Enhances Matrix-Directed Differentiation

TL;DR: In this article, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, as did levels of collagens in the extracellular matrix that determine E.
Journal ArticleDOI

Two independent modes of chromatin organization revealed by cohesin removal

TL;DR: It is shown that deletion of the cohesin-loading factor Nipbl in mouse liver leads to a marked reorganization of chromosomal folding, and the disappearance of TADs unmasks a finer compartment structure that accurately reflects the underlying epigenetic landscape.
References
More filters
Journal ArticleDOI

Topological domains in mammalian genomes identified by analysis of chromatin interactions

TL;DR: It is found that the boundaries of topological domains are enriched for the insulator binding protein CTCF, housekeeping genes, transfer RNAs and short interspersed element (SINE) retrotransposons, indicating that these factors may have a role in establishing the topological domain structure of the genome.
Journal ArticleDOI

TRANSFAC®: transcriptional regulation, from patterns to profiles

TL;DR: The TRANSFAC database on eukaryotic transcriptional regulation, comprising data on transcription factors, their target genes and regulatory binding sites, has been extended and further developed, both in number of entries and in the scope and structure of the collected data.
Journal ArticleDOI

Detection of nonneutral substitution rates on mammalian phylogenies

TL;DR: By applying phyloP to mammalian multiple alignments from the ENCODE project, it shed light on patterns of conservation/acceleration in known and predicted functional elements, approximate fractions of sites subject to constraint, and differences in clade-specific selection in the primate and glires clades.
Related Papers (5)