scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Constructing monocrystalline covalent organic networks by polymerization

01 Oct 2013-Nature Chemistry (Nature Research)-Vol. 5, Iss: 10, pp 830-834
TL;DR: This work shows how predictably ordered covalent or non-covalent structures can both be built using a single modular strategy, and forges a strong new link between polymer science and supramolecular chemistry.
Abstract: An emerging strategy for making ordered materials is modular construction, which connects preformed molecular subunits to neighbours through interactions of properly selected reactive sites. This strategy has yielded remarkable materials, including metal-organic frameworks joined by coordinative bonds, supramolecular networks linked by strong non-covalent interactions, and covalent organic frameworks in which atoms of carbon and other light elements are bonded covalently. However, the strategy has not yet produced covalently bonded organic materials in the form of large single crystals. Here we show that such materials can result from reversible self-addition polymerizations of suitably designed monomers. In particular, monomers with four tetrahedrally oriented nitroso groups polymerize to form diamondoid azodioxy networks that can be fully characterized by single-crystal X-ray diffraction. This work forges a strong new link between polymer science and supramolecular chemistry by showing how predictably ordered covalent or non-covalent structures can both be built using a single modular strategy.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the COF field is targeted, providing a historic overview of the chemistry, the advances in the topology design and synthetic reactions, illustrate the structural features and diversities, and scrutinize the development and potential of various functions through elucidating structure-function correlations.
Abstract: Covalent organic frameworks (COFs) are a class of crystalline porous organic polymers with permanent porosity and highly ordered structures. Unlike other polymers, a significant feature of COFs is that they are structurally predesignable, synthetically controllable, and functionally manageable. In principle, the topological design diagram offers geometric guidance for the structural tiling of extended porous polygons, and the polycondensation reactions provide synthetic ways to construct the predesigned primary and high-order structures. Progress over the past decade in the chemistry of these two aspects undoubtedly established the base of the COF field. By virtue of the availability of organic units and the diversity of topologies and linkages, COFs have emerged as a new field of organic materials that offer a powerful molecular platform for complex structural design and tailor-made functional development. Here we target a comprehensive review of the COF field, provide a historic overview of the chemistry of the COF field, survey the advances in the topology design and synthetic reactions, illustrate the structural features and diversities, scrutinize the development and potential of various functions through elucidating structure-function correlations based on interactions with photons, electrons, holes, spins, ions, and molecules, discuss the key fundamental and challenging issues that need to be addressed, and predict the future directions from chemistry, physics, and materials perspectives.

1,447 citations

Journal ArticleDOI
TL;DR: Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures.
Abstract: and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures Vasilios Georgakilas,† Jason A. Perman,‡ Jiri Tucek,‡ and Radek Zboril*,‡ †Material Science Department, University of Patras, 26504 Rio Patras, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic

1,366 citations

Journal ArticleDOI
29 May 2015-Science
TL;DR: How each application will limit the materials that can be used, and also the size and connectivity of the pores required, are reviewed to compare and contrast a growing range of porous materials that are finding increasing use in academic and industrial applications.
Abstract: From kitchen sieves and strainers to coffee filters, porous materials have a wide range of uses. On an industrial scale, they are used as sorbents, filters, membranes, and catalysts. Slater and Cooper review how each application will limit the materials that can be used, and also the size and connectivity of the pores required. They go on to compare and contrast a growing range of porous materials that are finding increasing use in academic and industrial applications. Science , this issue [10.1126/science.aaa8075][1] [1]: /lookup/doi/10.1126/science.aaa8075

1,152 citations


Cites background from "Constructing monocrystalline covale..."

  • ...Porous COFs (105–107) and MOFs (113) have potential in organic electronics, and porous conjugated microporous polymers are promising supercapacitors (114)....

    [...]

  • ...COFs have similar structure-property design advantages....

    [...]

  • ...Porous amorphous organic polymers showa similar trend of decreasing mechanical stability with increasing linker length (78); boron-based COFs were calculated to have similar mechanical properties to porous aromatic frameworks (79)....

    [...]

  • ...The crystal engineering approaches developed for zeolites, MOFs, and COFs cannot be applied directly to amorphous solids such as porous polymers, but analogous modular strategies have allowed functions such as porosity and electronic band gap to be controlled by choosing the appropriate molecular building blocks....

    [...]

  • ...Extended conjugation is not a typical property of zeolites or MOFs, but this can be achieved in conjugated microporous polymers (22) and in some COFs (105–107)....

    [...]

Journal ArticleDOI
TL;DR: This research demonstrates the utilization of fluorescent COFs for both sensing and removal of metal ions but also highlights the facile construction of functionalizedCOFs for environmental applications.
Abstract: Heavy metal ions are highly toxic and widely spread as environmental pollutants. New strategies are being developed to simultaneously detect and remove these toxic ions. Herein, we take the intrinsic advantage of covalent organic frameworks (COFs) and develop fluorescent COFs for sensing applications. As a proof-of-concept, a thioether-functionalized COF material, COF-LZU8, was “bottom-up” integrated with multifunctionality for the selective detection and facile removal of mercury(II): the π-conjugated framework as the signal transducer, the evenly and densely distributed thioether groups as the Hg2+ receptor, the regular pores facilitating the real-time detection and mass transfer, together with the robust COF structure for recycle use. The excellent sensing performance of COF-LZU8 was achieved in terms of high sensitivity, excellent selectivity, easy visibility, and real-time response. Meanwhile, the efficient removal of Hg2+ from water and the recycling of COF-LZU8 offers the possibility for practical ...

972 citations

Journal ArticleDOI
TL;DR: This review encompasses the recent significant breakthroughs and the conventional functions and practices in the field of porous Organic materials to find useful applications and imparts a comprehensive understanding of the strategic evolution of the design and synthetic approaches of porous organic materials with tunable characteristics.
Abstract: Porous organic materials have garnered colossal interest with the scientific fraternity due to their excellent gas sorption performances, catalytic abilities, energy storage capacities, and other intriguing applications. This review encompasses the recent significant breakthroughs and the conventional functions and practices in the field of porous organic materials to find useful applications and imparts a comprehensive understanding of the strategic evolution of the design and synthetic approaches of porous organic materials with tunable characteristics. We present an exhaustive analysis of the design strategies with special emphasis on the topologies of crystalline and amorphous porous organic materials. In addition to elucidating the structure–function correlation and state-of-the-art applications of porous organic materials, we address the challenges and restrictions that prevent us from realizing porous organic materials with tailored structures and properties for useful applications.

838 citations

References
More filters
Journal ArticleDOI
18 Nov 2005-Science
TL;DR: Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid and hexahydroxytriphenylene to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms.
Abstract: Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid {C6H4[B(OH)2]2} and hexahydroxytriphenylene [C18H6(OH)6]. Powder x-ray diffraction studies of the highly crystalline products (C3H2BO)6.(C9H12)1 (COF-1) and C9H4BO2 (COF-5) revealed expanded porous graphitic layers that are either staggered (COF-1, P6(3)/mmc) or eclipsed (COF-5, P6/mmm). Their crystal structures are entirely held by strong bonds between B, C, and O atoms to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms. COF-1 and COF-5 exhibit high thermal stability (to temperatures up to 500 degrees to 600 degrees C), permanent porosity, and high surface areas (711 and 1590 square meters per gram, respectively).

4,843 citations

Journal ArticleDOI
TL;DR: In this article, a method for least squares refinement of the atomic parameters of the ordered part of a crystal structure in the presence of disordered solvent areas is described, and the contribution of the observed contents to the total structure factor is calculated via a discrete Fourier transformation.
Abstract: A method is described for the least-squares refinement of the atomic parameters of the ordered part of a crystal structure in the presence of disordered solvent areas. Potential solvent regions are identified automatically. The contribution of the observed contents to the total structure factor is calculated via a discrete Fourier transformation, and incorporated in a further least-squares refinement of the ordered part of the structure. The procedure is iterated a few times to convergence. It is found that this mixed discrete-atom and continuous solvent-area model refinement approach greatly improves the quality of discrete atomic parameters, i.e. the geometry and the e.s.d.'s. An electron count over the solvent region in the final difference electron-density map provides a convenient estimate for the number of solvent molecules present in the unit cell. The application of the method to four structures is described.

3,456 citations

Journal ArticleDOI
TL;DR: This tutorial review describes the basic design concepts, the recent synthetic advancements and structural studies, and the frontiers of functional exploration of covalent organic frameworks.
Abstract: Covalent organic frameworks (COFs) are a class of crystalline porous polymers that allow the atomically precise integration of organic units to create predesigned skeletons and nanopores. They have recently emerged as a new molecular platform for designing promising organic materials for gas storage, catalysis, and optoelectronic applications. The reversibility of dynamic covalent reactions, diversity of building blocks, and geometry retention are three key factors involved in the reticular design and synthesis of COFs. This tutorial review describes the basic design concepts, the recent synthetic advancements and structural studies, and the frontiers of functional exploration.

2,182 citations