scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Construction of a Polarity-Switchable Photoelectrochemical Biosensor for Ultrasensitive Detection of miRNA-141

01 Oct 2021-Analytical Chemistry (Anal Chem)-Vol. 93, Iss: 40, pp 13727-13733
TL;DR: In this paper, a photoelectrochemical (PEC) biosensing platform was fabricated for ultrasensitive miRNA-141 detection, which is based on a photocurrent polarity-switchable system using CdS quantum dots (QDs) in the presence of a 5,10,15,20-tetrakis (4-aminophenyl)-21H,23H-porphine (Tph-2H)-coated glassy carbon electrode (GCE).
Abstract: As an early-stage tumor biomarker, microRNA (miRNA) has clinical application potential and its sensitive and accurate detection is significant for early tumor diagnosis. In this study, a photoelectrochemical (PEC) biosensing platform was fabricated for ultrasensitive miRNA-141 detection, which is based on a photocurrent polarity-switchable system using CdS quantum dots (QDs) in the presence of a 5,10,15,20-tetrakis (4-aminophenyl)-21H,23H-porphine (Tph-2H)-coated glassy carbon electrode (GCE). As an excellent photoactive material, Tph-2H has a narrow band gap that effectively gathers photoelectrons under visible light irradiation and improves the transfer ability of photogenerated electrons. Further, the detection sensitivity of miRNA-141 could be significantly improved by combining an enzyme-assisted recycle amplification reaction and a magnetic bead-based separation strategy. The proposed photocurrent polarity-switchable PEC biosensor could efficiently eliminate the false-positive or false-negative signals and achieve a wide linear response range from 1 fM to 1 nM with a low detection limit of 0.33 fM for miRNA-141, providing a potentially alternative solution for detecting other biomarkers in bioanalysis and clinical diagnosis.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , a review of electrochemical miRNAs biosensors is presented, which is mainly based on the application of nanomaterials and preprocessing criteria, design steps, and the principle of detection.

19 citations

Journal ArticleDOI
TL;DR: An overview of the recent use of QDs as biosensors in miRNA detection is presented, also highlighting some tutorial descriptions of the synthesis methods ofQDs, possible surface modification, and functionalization approaches.
Abstract: Quantum dots (QDs) possess exceptional optoelectronic properties that enable their use in the most diverse applications, namely, in the medical field. The prevalence of cancer has increased and has been considered the major cause of death worldwide. Thus, there has been a great demand for new methodologies for diagnosing and monitoring cancer in cells to provide an earlier prognosis of the disease and contribute to the effectiveness of treatment. Several molecules in the human body can be considered relevant as cancer markers. Studies published over recent years have revealed that micro ribonucleic acids (miRNAs) play a crucial role in this pathology, since they are responsible for some physiological processes of the cell cycle and, most important, they are overexpressed in cancer cells. Thus, the analytical sensing of miRNA has gained importance to provide monitoring during cancer treatment, allowing the evaluation of the disease’s evolution. Recent methodologies based on nanochemistry use fluorescent quantum dots for sensing of the miRNA. Combining the unique characteristics of QDs, namely, their fluorescence capacity, and the fact that miRNA presents an aberrant expression in cancer cells, the researchers created diverse strategies for miRNA monitoring. This review aims to present an overview of the recent use of QDs as biosensors in miRNA detection, also highlighting some tutorial descriptions of the synthesis methods of QDs, possible surface modification, and functionalization approaches.

18 citations

Journal ArticleDOI
TL;DR: An iron phthalocyanine (FePc)-induced switchable photocurrent-polarity platform was developed for highly selective assay of As(V), which meets the detection requirement of the World Health Organization for the arsenic concentration in drinking water.
Abstract: Water pollution presents a significant environmental concern on earth. Herein, due to the serious environmental harmfulness of arsenate [As(V)], an iron phthalocyanine (FePc)-induced switchable photocurrent-polarity platform was developed for highly selective assay of As(V). First, magnetic Co3O4-Fe3O4 cubes were obtained by calcination of the CoFe Prussian blue analogue and then functionalized with oligonucleotide (S1). In the presence of As(V), S1 could be released based on the stronger affinity between As(V) and Co3O4-Fe3O4 cubes. After magnetic separation by Co3O4-Fe3O4 cubes, the released S1 was used to trigger the catalytic hairpin assembly (CHA) and hybridization chain reaction, resulting in the formation of lots of G-quadruplex structures on the AgInS2/ITO electrode. Then, the capture of FePc by the G-quadruplex led to the switch of the photocurrent polarity of the AgInS2/ITO electrode from the anode to the cathode. Thus, As(V) was sensitively assayed with a low detection limit of 1.0 nM and a wide linear response range from 10 nM to 200 μM. This meets the detection requirement of the World Health Organization for the arsenic concentration in drinking water [less than 10 μg L-1 (130 nM)]. In addition, whether it was cationic or anionic interferents except phosphate (PO43-), only As(V) could generate the cathodic photocurrent, effectively avoiding the false-positive or false-negative results during As(V) assay. Interestingly, As(V) was also simultaneously separated from the detection system by Co3O4-Fe3O4 magnetic cubes. The proposed photoelectrochemical platform may have a great potential application for the selective detection of As(V) in environmental fields.

16 citations

Journal ArticleDOI
TL;DR: The MLDW designed puts forward an innovative insight to construct a functional DNA nanodevice and promote the investigation of the inherent performance of nucleic acid signal amplification for ultimate application in the detection of biomolecules and clinical disease diagnosis.
Abstract: In this work, an intelligent multiregion linear DNA walker (MLDW) with a high walking rate and a high amplification efficiency was explored for ultrasensitive detection of miRNA. Significantly, amounts of functional domain could be concentrated in a long linear DNA obtained by the target miRNA-mediated rolling-circle amplification to simultaneously increase the local concentration and collision probability, resulting in an obviously improved reaction rate. Impressively, the MLDW can accomplish the reaction within 30 min, which is at least 4 times beyond that of traditional single-leg and multiple-leg DNA walkers. As a proof of concept, the high-efficiency MLDW was used to develop an electrochemical biosensing platform for ultrasensitive detection of target miRNA-21 with a low detection limit down to 36 aM. Therefore, the MLDW we designed puts forward an innovative insight to construct a functional DNA nanodevice and promote the investigation of the inherent performance of nucleic acid signal amplification for ultimate application in the detection of biomolecules and clinical disease diagnosis.

11 citations

References
More filters
Journal ArticleDOI
TL;DR: MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment and has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein-coding genes involved in cancer.
Abstract: MicroRNA (miRNA ) alterations are involved in the initiation and progression of human cancer. The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery. MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment. In addition, profiling has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein- coding genes involved in cancer.

6,345 citations

Journal ArticleDOI
TL;DR: Two founding members of the microRNA family were originally identified in Caenorhabditis elegans as genes that were required for the timed regulation of developmental events and indicate the existence of multiple RISCs that carry out related but specific biological functions.
Abstract: MicroRNAs are a family of small, non-coding RNAs that regulate gene expression in a sequence-specific manner. The two founding members of the microRNA family were originally identified in Caenorhabditis elegans as genes that were required for the timed regulation of developmental events. Since then, hundreds of microRNAs have been identified in almost all metazoan genomes, including worms, flies, plants and mammals. MicroRNAs have diverse expression patterns and might regulate various developmental and physiological processes. Their discovery adds a new dimension to our understanding of complex gene regulatory networks.

6,282 citations

Journal ArticleDOI
TL;DR: This review provides an over-view of the important advances in the construction and application of photoelectrochemical sensing in recent year and describes the typical strategies of design and engineering photoactive materials for improve the light excitation as well as charge separation/transfer to modulate the perfor-mance of photo Electrochemical sensing system.
Abstract: Photoelectrochemical sensing is an attractive tool for rapid and accurate monitor of chemical and biochemical mole-cules. Compared with conventional analysis techniques, photoelectrochemical sensing exhibits unique technique superiority and has become a hot topic in material chemis-try and analytical chemistry. This review provides an over-view of the important advances in the construction and application of photoelectrochemical sensing in recent year. In the first segment, we briefly introduce the general princi-ple and technical characteristic of photoelectrochemical sensing. In the subsequent sections, we primarily devote to elaborating the typical strategies of design and engineering photoactive materials for improve the light excitation as well as charge separation/transfer to modulate the perfor-mance of photoelectrochemical sensing system. Addition-ally, the current research status of photoelectrochemical sensing with a particular emphasis on the innovative sens-ing devices and detection modes for achieving specific sensing functions is describes in detail with the illustrative examples. Finally, the critical challenges on the journey to achieve real-life applications of photoelectrochemical sens-ing and the viable solutions for solving these problems as well as the future research perspectives are discussed.

521 citations

Journal ArticleDOI
TL;DR: Multiple microRNAs (miRNAs) are detected in a microarray format using a novel approach that combines a surface enzyme reaction with nanoparticle-amplified SPR imaging (SPRI).
Abstract: Multiple microRNAs (miRNAs) are detected in a microarray format using a novel approach that combines a surface enzyme reaction with nanoparticle-amplified SPR imaging (SPRI). The surface reaction of poly(A) polymerase creates poly(A) tails on miRNAs hybridized onto locked nucleic acid (LNA) microarrays. DNA-modified nanoparticles are then adsorbed onto the poly(A) tails and detected with SPRI. This ultrasensitive nanoparticle-amplified SPRI methodology can be used for miRNA profiling at attomole levels.

425 citations

Journal ArticleDOI
TL;DR: This strategy provides a new horizon for the development of NIR-based PEC biosensors in the aspect of developing MOF-derived photoelectric materials, flexible design of 3D-printing device and effective signal amplification mode.
Abstract: This work reports a ZIF-8 (ZIF: Zeolitic Imidazolate Framework)-assisted NaYF4:Yb,Tm@ZnO upconverter for the photoelectrochemical (PEC) biosensing of carcinoembryonic antigen (CEA) under near-infrared (NIR) irradiation on a homemade 3D-printed device with DNA walker-based amplification strategy. The composite photosensitive material NaYF4:Yb,Tm@ZnO, as converter to transfer NIR import to photocurrent output, was driven from annealed NaYF4:Yb,Tm@ZIF-8. Yb3+ and Tm3+-codoped NaYF4 (NaYF4:Yb,Tm) converted NIR excitation into UV emission, matching with the absorption of ZnO for in situ excitation to generate the photocurrent. Upon target CEA introduction, the swing arm of DNA walker including the sequence of CEA aptamer carried out the sandwiched bioassembly with CEA capture aptamer on the G-rich anchorage DNA tracks-functionalized magnetic beads. Thereafter, DNA walker was triggered, and the swing arm DNA was captured by the G-rich anchorage DNA according to partly complementary pairing and Exonuclease III (Exo III) consumed anchorage DNA by a burnt-bridge mechanism to go into the next cycle. The released guanine (G) bases from DNA walker enhanced the photocurrent response on a miniature homemade 3D-printed device consisting of the detection cell, dark box, and light platform. Under optimal conditions, NaYF4:Yb,Tm@ZnO-based NIR light-driven PEC biosensor presented high sensitivity and selectivity for CEA sensing with a detection limit of 0.032 ng mL-1. Importantly, our strategy provides a new horizon for the development of NIR-based PEC biosensors in the aspect of developing MOF-derived photoelectric materials, flexible design of a 3D-printed device, and effective signal amplification mode.

357 citations