scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Content and organization of the human Ig VH locus: definition of three new VH families and linkage to the Ig CH locus.

01 Mar 1988-The EMBO Journal (European Molecular Biology Organization)-Vol. 7, Iss: 3, pp 727-738
TL;DR: The first report of the physical linkage of the variable and constant loci of a human Ig gene family is provided by demonstrating that the most proximal known human VH segments lie within 100 kb of the constant region locus.
Abstract: We present a detailed analysis of the content and organization of the human immunoglobulin VH locus. Human VH genes representing five distinct families were isolated, including novel members belonging to two out of three of the known VH gene families (VH1 and VH3) as well as members of three new families (VH4, VH5, and VH6). We report the nucleotide sequence of 21 novel human VH genes, many of which belong to the three new VH gene families. In addition, we provide a preliminary analysis of the organization of these gene segments over the full extent of the locus. We find that the five multi-segment families (VH1-5) have members interspersed over nearly the full 1500-2000 kb of the VH locus, and estimate that the entire heavy chain locus covers 2500 kb or less. Finally, we provide the first report of the physical linkage of the variable and constant loci of a human Ig gene family by demonstrating that the most proximal known human VH segments lie within 100 kb of the constant region locus.
Citations
More filters
Patent
28 Aug 1991
TL;DR: In this paper, a transgenic non-human animals capable of producing heterologous antibodies and methods for producing human sequence antibodies which bind to human antigens with substantial affinity are described.
Abstract: The invention relates to transgenic non-human animals capable of producing heterologous antibodies and methods for producing human sequence antibodies which bind to human antigens with substantial affinity.

3,143 citations

Patent
18 Mar 1992
TL;DR: In this paper, a transgenes containing sequences of unrearranged heterologous human immunoglobulin heavy chains are introduced into a non-human animal, thereby forming a transgenic animal capable of functionally rearranging transgenio-globulin sequences and producing a repertoire of antibodies.
Abstract: The invention relates to transgenic non-human animals capable of producing heterologous antibodies and transgenic non-human animals having inactivated endogenous immunoglobulin genes. In one aspect of the invention, endogenous immunoglobulin genes are suppressed by antisense polynucleotides and/or by antiserum directed against endogenous immunoglobulins. Heterologous antibodies are encoded by immunoglobulin genes not normally found in the genome of that species of non-human animal. In one aspect of the invention, one or more transgenes containing sequences of unrearranged heterologous human immunoglobulin heavy chains are introduced into a non-human animal thereby forming a transgenic animal capable of functionally rearranging transgenic immunoglobulin sequences and producing a repertoire of antibodies of various isotypes encoded by human immunoglobulin genes. Such heterologous human antibodies are produced in B-cells which are thereafter immortalized, e.g., by fusing with an immortalizing cell line such as a myeloma or by manipulating such B-cells by other techniques to perpetuate a cell line capable of producing a monoclonal heterologous antibody. The invention also relates to heavy and light chain immunoglobulin transgenes for making such transgenic non-human animals as well as methods and vectors for disrupting endogenous immunoglobulin loci in the transgenic animal.

2,692 citations

Journal ArticleDOI
TL;DR: The results suggest that a single large phage display library can be used to isolate human antibodies against any antigen, by-passing both hybridoma technology and immunization.

2,678 citations

Patent
29 Apr 1996
TL;DR: In this paper, a transgenic animal has been modified to produce antibodies in response to antigenic challenge, but whose endogenous loci have been disabled, and various subsequent manipulations can be performed to obtain either antibodies per se or analogs thereof.
Abstract: Fully human antibodies against a specific antigen can be prepared by administering the antigen to a transgenic animal which has been modified to produce such antibodies in response to antigenic challenge, but whose endogenous loci have been disabled. Various subsequent manipulations can be performed to obtain either antibodies per se or analogs thereof.

2,667 citations

Patent
17 Dec 1991
TL;DR: In this article, a transgenes containing sequences of unrearranged heterologous human immunoglobulin heavy chains are introduced into a non-human animal, thereby forming a transgenic animal capable of functionally rearranging transgenio-globulin sequences and producing a repertoire of antibodies.
Abstract: The invention relates to transgenic non-human animals capable of producing heterologous antibodies and transgenic non-human animals having inactivated endogenous immunoglobulin genes. In one aspect of the invention, endogenous immunoglobulin genes are suppressed by antisense polynucleotides and/or by antiserum directed against endogenous immunoglobulins. Heterologous antibodies are encoded by immunoglobulin genes not normally found in the genome of that species of non-human animal. In one aspect of the invention, one or more transgenes containing sequences of unrearranged heterologous human immunoglobulin heavy chains are introduced into a non-human animal thereby forming a transgenic animal capable of functionally rearranging transgenic immunoglobulin sequences and producing a repertoire of antibodies of various isotypes encoded by human immunoglobulin genes. Such heterologous human antibodies are produced in B-cells which are thereafter immortalized, e.g., by fusing with an immortalizing cell line such as a myeloma or by manipulating such B-cells by other techniques to perpetuate a cell line capable of producing a monoclonal heterologous antibody. The invention also relates to heavy and light chain immunoglobulin transgenes for making such transgenic non-human animals as well as methods and vectors for disrupting endogenous immunoglobulin loci in the transgenic animal.

2,411 citations