scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Contextual deep CNN based hyperspectral classification

10 Jul 2016-pp 3322-3325
TL;DR: In this article, a novel deep convolutional neural networks (CNN) based approach called contextual deep CNN that can jointly exploit spatial and spectral features for hyperspectral image classification is proposed.
Abstract: In this paper, we describe a novel deep convolutional neural networks (CNN) based approach called contextual deep CNN that can jointly exploit spatial and spectral features for hyperspectral image classification. The contextual deep CNN first concurrently applies multiple 3-dimensional local convolutional filters with different sizes jointly exploiting spatial and spectral features of a hyperspectral image. The initial spatial and spectral feature maps obtained from applying the variable size convolutional filters are then combined together to form a joint spatio-spectral feature map. The joint feature map representing rich spectral and spatial properties of the hyperspectral image is then fed through fully convolutional layers that eventually predict the corresponding label of each pixel vector. The proposed approach is tested on two benchmark datasets: the Indian Pines dataset and the Pavia University scene dataset. Performance comparison shows enhanced classification performance of the proposed approach over the current state of the art on both datasets.
Citations
More filters
Journal ArticleDOI
TL;DR: An end-to-end spectral–spatial residual network that takes raw 3-D cubes as input data without feature engineering for hyperspectral image classification and achieves the state-of-the-art HSI classification accuracy in agricultural, rural–urban, and urban data sets.
Abstract: In this paper, we designed an end-to-end spectral–spatial residual network (SSRN) that takes raw 3-D cubes as input data without feature engineering for hyperspectral image classification. In this network, the spectral and spatial residual blocks consecutively learn discriminative features from abundant spectral signatures and spatial contexts in hyperspectral imagery (HSI). The proposed SSRN is a supervised deep learning framework that alleviates the declining-accuracy phenomenon of other deep learning models. Specifically, the residual blocks connect every other 3-D convolutional layer through identity mapping, which facilitates the backpropagation of gradients. Furthermore, we impose batch normalization on every convolutional layer to regularize the learning process and improve the classification performance of trained models. Quantitative and qualitative results demonstrate that the SSRN achieved the state-of-the-art HSI classification accuracy in agricultural, rural–urban, and urban data sets: Indian Pines, Kennedy Space Center, and University of Pavia.

1,105 citations

Journal ArticleDOI
TL;DR: A novel deep convolutional neural network that is deeper and wider than other existing deep networks for hyperspectral image classification, called contextual deep CNN, can optimally explore local contextual interactions by jointly exploiting local spatio-spectral relationships of neighboring individual pixel vectors.
Abstract: In this paper, we describe a novel deep convolutional neural network (CNN) that is deeper and wider than other existing deep networks for hyperspectral image classification. Unlike current state-of-the-art approaches in CNN-based hyperspectral image classification, the proposed network, called contextual deep CNN, can optimally explore local contextual interactions by jointly exploiting local spatio-spectral relationships of neighboring individual pixel vectors. The joint exploitation of the spatio-spectral information is achieved by a multi-scale convolutional filter bank used as an initial component of the proposed CNN pipeline. The initial spatial and spectral feature maps obtained from the multi-scale filter bank are then combined together to form a joint spatio-spectral feature map. The joint feature map representing rich spectral and spatial properties of the hyperspectral image is then fed through a fully convolutional network that eventually predicts the corresponding label of each pixel vector. The proposed approach is tested on three benchmark data sets: the Indian Pines data set, the Salinas data set, and the University of Pavia data set. Performance comparison shows enhanced classification performance of the proposed approach over the current state-of-the-art on the three data sets.

578 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive survey of state-of-the-art remote sensing deep learning research for remote sensing applications, focusing on theories, tools, and challenges for the remote sensing community.
Abstract: In recent years, deep learning (DL), a rebranding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, and natural language processing. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV, e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should not only be aware of advancements such as DL, but also be leading researchers in this area. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools, and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as they relate to (i) inadequate data sets, (ii) human-understandable solutions for modeling physical phenomena, (iii) big data, (iv) nontraditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial, and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.

467 citations

Journal ArticleDOI
TL;DR: In this article, a novel deep convolutional neural network (CNN) that is deeper and wider than other existing deep networks for hyperspectral image classification is proposed, which can optimally explore local contextual interactions by jointly exploiting local spatio-spectral relationships of neighboring individual pixel vectors.
Abstract: In this paper, we describe a novel deep convolutional neural network (CNN) that is deeper and wider than other existing deep networks for hyperspectral image classification. Unlike current state-of-the-art approaches in CNN-based hyperspectral image classification, the proposed network, called contextual deep CNN, can optimally explore local contextual interactions by jointly exploiting local spatio-spectral relationships of neighboring individual pixel vectors. The joint exploitation of the spatio-spectral information is achieved by a multi-scale convolutional filter bank used as an initial component of the proposed CNN pipeline. The initial spatial and spectral feature maps obtained from the multi-scale filter bank are then combined together to form a joint spatio-spectral feature map. The joint feature map representing rich spectral and spatial properties of the hyperspectral image is then fed through a fully convolutional network that eventually predicts the corresponding label of each pixel vector. The proposed approach is tested on three benchmark datasets: the Indian Pines dataset, the Salinas dataset and the University of Pavia dataset. Performance comparison shows enhanced classification performance of the proposed approach over the current state-of-the-art on the three datasets.

440 citations

Journal ArticleDOI
TL;DR: A systematic review of pixel‐wise and scene‐wise RS image classification approaches that are based on the use of DL and a comparative analysis regarding the performances of typical DL‐based RS methods are provided.
Abstract: Remote sensing (RS) image classification plays an important role in the earth observation technology using RS data, having been widely exploited in both military and civil fields. However, due to the characteristics of RS data such as high dimensionality and relatively small amounts of labeled samples available, performing RS image classification faces great scientific and practical challenges. In recent years, as new deep learning (DL) techniques emerge, approaches to RS image classification with DL have achieved significant breakthroughs, offering novel opportunities for the research and development of RS image classification. In this paper, a brief overview of typical DL models is presented first. This is followed by a systematic review of pixel‐wise and scene‐wise RS image classification approaches that are based on the use of DL. A comparative analysis regarding the performances of typical DL‐based RS methods is also provided. Finally, the challenges and potential directions for further research are discussed.

252 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Abstract: Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [20], the VGG net [31], and GoogLeNet [32]) into fully convolutional networks and transfer their learned representations by fine-tuning [3] to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes less than one fifth of a second for a typical image.

28,225 citations

Journal ArticleDOI
TL;DR: The concept of deep learning is introduced into hyperspectral data classification for the first time, and a new way of classifying with spatial-dominated information is proposed, which is a hybrid of principle component analysis (PCA), deep learning architecture, and logistic regression.
Abstract: Classification is one of the most popular topics in hyperspectral remote sensing. In the last two decades, a huge number of methods were proposed to deal with the hyperspectral data classification problem. However, most of them do not hierarchically extract deep features. In this paper, the concept of deep learning is introduced into hyperspectral data classification for the first time. First, we verify the eligibility of stacked autoencoders by following classical spectral information-based classification. Second, a new way of classifying with spatial-dominated information is proposed. We then propose a novel deep learning framework to merge the two features, from which we can get the highest classification accuracy. The framework is a hybrid of principle component analysis (PCA), deep learning architecture, and logistic regression. Specifically, as a deep learning architecture, stacked autoencoders are aimed to get useful high-level features. Experimental results with widely-used hyperspectral data indicate that classifiers built in this deep learning-based framework provide competitive performance. In addition, the proposed joint spectral-spatial deep neural network opens a new window for future research, showcasing the deep learning-based methods' huge potential for accurate hyperspectral data classification.

2,071 citations