scispace - formally typeset
Search or ask a question
Proceedings Article

Continual Learning in Practice

Tom Diethe1, Tom Borchert1, Eno Thereska1, Borja Balle1, Neil D. Lawrence1 
24 Apr 2019-
TL;DR: In this article, a reference architecture for self-maintaining systems that can learn continually, as data arrives, is presented, which represents continual AutoML or Automatically Adaptive Machine Learning.
Abstract: This paper describes a reference architecture for self-maintaining systems that can learn continually, as data arrives. In environments where data evolves, we need architectures that manage Machine Learning (ML) models in production, adapt to shifting data distributions, cope with outliers, retrain when necessary, and adapt to new tasks. This represents continual AutoML or Automatically Adaptive Machine Learning. We describe the challenges and proposes a reference architecture.

Content maybe subject to copyright    Report

Citations
More filters
02 Nov 2011
TL;DR: This paper presents a novel statistical change-point detection algorithm based on non-parametric divergence estimation between time-series samples from two retrospective segments that is accurately and efficiently estimated by a method of direct density-ratio estimation.
Abstract: The objective of change-point detection is to discover abrupt property changes lying behind time-series data. In this paper, we present a novel statistical change-point detection algorithm based on non-parametric divergence estimation between time-series samples from two retrospective segments. Our method uses the relative Pearson divergence as a divergence measure, and it is accurately and efficiently estimated by a method of direct density-ratio estimation. Through experiments on artificial and real-world datasets including human-activity sensing, speech, and Twitter messages, we demonstrate the usefulness of the proposed method.

271 citations

Posted Content
TL;DR: By mapping found challenges to the steps of the machine learning deployment workflow it is shown that practitioners face issues at each stage of the deployment process.
Abstract: In recent years, machine learning has received increased interest both as an academic research field and as a solution for real-world business problems. However, the deployment of machine learning models in production systems can present a number of issues and concerns. This survey reviews published reports of deploying machine learning solutions in a variety of use cases, industries and applications and extracts practical considerations corresponding to stages of the machine learning deployment workflow. Our survey shows that practitioners face challenges at each stage of the deployment. The goal of this paper is to layout a research agenda to explore approaches addressing these challenges.

139 citations

01 Dec 2004
TL;DR: In this paper, the authors introduce a sublinear space data structure called the countmin sketch for summarizing data streams, which allows fundamental queries in data stream summarization such as point, range, and inner product queries to be approximately answered very quickly; in addition it can be applied to solve several important problems in data streams such as finding quantiles, frequent items, etc.
Abstract: We introduce a new sublinear space data structure--the count-min sketch--for summarizing data streams. Our sketch allows fundamental queries in data stream summarization such as point, range, and inner product queries to be approximately answered very quickly; in addition, it can be applied to solve several important problems in data streams such as finding quantiles, frequent items, etc. The time and space bounds we show for using the CM sketch to solve these problems significantly improve those previously known--typically from 1/e2 to 1/e in factor.

65 citations

Posted Content
TL;DR: A theoretical approach is developed that derives the computational properties which CL algorithms would have to possess in order to avoid catastrophic forgetting and finds that such optimal CL algorithms generally solve an NP-hard problem and will require perfect memory to do so.
Abstract: Continual Learning (CL) algorithms incrementally learn a predictor or representation across multiple sequentially observed tasks. Designing CL algorithms that perform reliably and avoid so-called catastrophic forgetting has proven a persistent challenge. The current paper develops a theoretical approach that explains why. In particular, we derive the computational properties which CL algorithms would have to possess in order to avoid catastrophic forgetting. Our main finding is that such optimal CL algorithms generally solve an NP-hard problem and will require perfect memory to do so. The findings are of theoretical interest, but also explain the excellent performance of CL algorithms using experience replay, episodic memory and core sets relative to regularization-based approaches.

41 citations

Posted Content
TL;DR: The challenges to successful implementation of solutions in model performance and data monitoring, detecting outliers and data drift using statistical techniques, and providing explanations of historic predictions are discussed.
Abstract: The machine learning lifecycle extends beyond the deployment stage. Monitoring deployed models is crucial for continued provision of high quality machine learning enabled services. Key areas include model performance and data monitoring, detecting outliers and data drift using statistical techniques, and providing explanations of historic predictions. We discuss the challenges to successful implementation of solutions in each of these areas with some recent examples of production ready solutions using open source tools.

25 citations

References
More filters
Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

Journal ArticleDOI
TL;DR: The relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift are discussed.
Abstract: A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For example, we sometimes have a classification task in one domain of interest, but we only have sufficient training data in another domain of interest, where the latter data may be in a different feature space or follow a different data distribution. In such cases, knowledge transfer, if done successfully, would greatly improve the performance of learning by avoiding much expensive data-labeling efforts. In recent years, transfer learning has emerged as a new learning framework to address this problem. This survey focuses on categorizing and reviewing the current progress on transfer learning for classification, regression, and clustering problems. In this survey, we discuss the relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift. We also explore some potential future issues in transfer learning research.

18,616 citations

Journal ArticleDOI
TL;DR: Analysis of the paradigm problem demonstrates that allowing a small number of test messages to be falsely identified as members of the given set will permit a much smaller hash area to be used without increasing reject time.
Abstract: In this paper trade-offs among certain computational factors in hash coding are analyzed. The paradigm problem considered is that of testing a series of messages one-by-one for membership in a given set of messages. Two new hash-coding methods are examined and compared with a particular conventional hash-coding method. The computational factors considered are the size of the hash area (space), the time required to identify a message as a nonmember of the given set (reject time), and an allowable error frequency.The new methods are intended to reduce the amount of space required to contain the hash-coded information from that associated with conventional methods. The reduction in space is accomplished by exploiting the possibility that a small fraction of errors of commission may be tolerable in some applications, in particular, applications in which a large amount of data is involved and a core resident hash area is consequently not feasible using conventional methods.In such applications, it is envisaged that overall performance could be improved by using a smaller core resident hash area in conjunction with the new methods and, when necessary, by using some secondary and perhaps time-consuming test to “catch” the small fraction of errors associated with the new methods. An example is discussed which illustrates possible areas of application for the new methods.Analysis of the paradigm problem demonstrates that allowing a small number of test messages to be falsely identified as members of the given set will permit a much smaller hash area to be used without increasing reject time.

7,390 citations

Proceedings Article
03 Dec 2012
TL;DR: This work describes new algorithms that take into account the variable cost of learning algorithm experiments and that can leverage the presence of multiple cores for parallel experimentation and shows that these proposed algorithms improve on previous automatic procedures and can reach or surpass human expert-level optimization for many algorithms.
Abstract: The use of machine learning algorithms frequently involves careful tuning of learning parameters and model hyperparameters. Unfortunately, this tuning is often a "black art" requiring expert experience, rules of thumb, or sometimes brute-force search. There is therefore great appeal for automatic approaches that can optimize the performance of any given learning algorithm to the problem at hand. In this work, we consider this problem through the framework of Bayesian optimization, in which a learning algorithm's generalization performance is modeled as a sample from a Gaussian process (GP). We show that certain choices for the nature of the GP, such as the type of kernel and the treatment of its hyperparameters, can play a crucial role in obtaining a good optimizer that can achieve expertlevel performance. We describe new algorithms that take into account the variable cost (duration) of learning algorithm experiments and that can leverage the presence of multiple cores for parallel experimentation. We show that these proposed algorithms improve on previous automatic procedures and can reach or surpass human expert-level optimization for many algorithms including latent Dirichlet allocation, structured SVMs and convolutional neural networks.

5,654 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce a sublinear space data structure called the countmin sketch for summarizing data streams, which allows fundamental queries in data stream summarization such as point, range, and inner product queries to be approximately answered very quickly; in addition it can be applied to solve several important problems in data streams such as finding quantiles, frequent items, etc.

1,939 citations