scispace - formally typeset
Open AccessJournal ArticleDOI

Continuous-variable optical quantum-state tomography

Reads0
Chats0
TLDR
In this paper, a review of the latest developments in continuous-variable quantum-state tomography of optical fields and photons, placing a special emphasis on its practical aspects and applications in quantum information technology, is presented.
Abstract
This review covers the latest developments in continuous-variable quantum-state tomography of optical fields and photons, placing a special emphasis on its practical aspects and applications in quantum-information technology. Optical homodyne tomography is reviewed as a method of reconstructing the state of light in a given optical mode. A range of relevant practical topics is discussed, such as state-reconstruction algorithms (with emphasis on the maximum-likelihood technique), the technology of time-domain homodyne detection, mode-matching issues, and engineering of complex quantum states of light. The paper also surveys quantum-state tomography for the transverse spatial state (spatial mode) of the field in the special case of fields containing precisely one photon.

read more

Citations
More filters
Journal ArticleDOI

Cavity Optomechanics

TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Journal ArticleDOI

Gaussian quantum information

TL;DR: This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination.

Gaussian quantum information

TL;DR: In this article, a review of the state of the art in continuous-variable quantum information processing can be found, ranging from the basic theoretical tools and landmark experimental realizations to the most recent successful developments.
Journal Article

Observation of squeezed states generated by four-wave mixing in an optical cavity

TL;DR: Squeezed states of the electromagnetic field have been generated by nondegenerate four-wave mixing due to Na atoms in an optical cavity by measuring the total noise level in the deamplified quadrature below the vacuum noise level.
Journal ArticleDOI

Quantum interface between light and atomic ensembles

TL;DR: In this paper, the interaction of light with multiatom ensembles has attracted much attention as a basic building block for quantum information processing and quantum state engineering, and the authors provide a common theoretical frame for these processes, describes basic experimental techniques and media used for quantum interfaces, and reviews several key experiments on quantum memory for light, quantum entanglement between atomic enambles and light, and quantum teleportation with atomic enassembles.
References
More filters
Journal ArticleDOI

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

TL;DR: Consideration of the problem of making predictions concerning a system on the basis of measurements made on another system that had previously interacted with it leads to the result that one is led to conclude that the description of reality as given by a wave function is not complete.
Journal ArticleDOI

Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels

TL;DR: An unknown quantum state \ensuremath{\Vert}\ensure Math{\varphi}〉 can be disassembled into, then later reconstructed from, purely classical information and purely nonclassical Einstein-Podolsky-Rosen (EPR) correlations.
Journal ArticleDOI

On the Quantum Correction For Thermodynamic Equilibrium

TL;DR: In this article, the Boltzmann formula for the probability of a configuration is given in classical theory by means of a probability function, and the result discussed is developed for the correction term.
Book ChapterDOI

On the quantum correction for thermodynamic equilibrium

TL;DR: In this article, the Boltzmann formula for lower temperatures has been developed for a correction term, which can be developed into a power series of h. The formula is developed for this correction by means of a probability function and the result discussed.
Journal ArticleDOI

A scheme for efficient quantum computation with linear optics.

TL;DR: It is shown that efficient quantum computation is possible using only beam splitters, phase shifters, single photon sources and photo-detectors and are robust against errors from photon loss and detector inefficiency.
Related Papers (5)