scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Continuum Robots for Medical Applications: A Survey

TL;DR: The state of the art in continuum robot manipulators and systems intended for application to interventional medicine are described, and relevant research in design, modeling, control, and sensing for continuum manipulators are discussed.
Abstract: In this paper, we describe the state of the art in continuum robot manipulators and systems intended for application to interventional medicine. Inspired by biological trunks, tentacles, and snakes, continuum robot designs can traverse confined spaces, manipulate objects in complex environments, and conform to curvilinear paths in space. In addition, many designs offer inherent structural compliance and ease of miniaturization. After decades of pioneering research, a host of designs have now been investigated and have demonstrated capabilities beyond the scope of conventional rigid-link robots. Recently, we have seen increasing efforts aimed at leveraging these qualities to improve the frontiers of minimally invasive surgical interventions. Several concepts have now been commercialized, which are inspiring and enabling a current paradigm shift in surgical approaches toward flexible access routes, e.g., through natural orifices such as the nose. In this paper, we provide an overview of the current state of this field from the perspectives of both robotics science and medical applications. We discuss relevant research in design, modeling, control, and sensing for continuum manipulators, and we highlight how this work is being used to build robotic systems for specific surgical procedures. We provide perspective for the future by discussing current limitations, open questions, and challenges.
Citations
More filters
Journal ArticleDOI
06 Dec 2016
TL;DR: The challenge ahead for soft robotics is to further develop the abilities for robots to grow, evolve, self-heal, develop, and biodegrade, which are the ways that robots can adapt their morphology to the environment.
Abstract: The proliferation of soft robotics research worldwide has brought substantial achievements in terms of principles, models, technologies, techniques, and prototypes of soft robots. Such achievements are reviewed here in terms of the abilities that they provide robots that were not possible before. An analysis of the evolution of this field shows how, after a few pioneering works in the years 2009 to 2012, breakthrough results were obtained by taking seminal technological and scientific challenges related to soft robotics from actuation and sensing to modeling and control. Further progress in soft robotics research has produced achievements that are important in terms of robot abilities-that is, from the viewpoint of what robots can do today thanks to the soft robotics approach. Abilities such as squeezing, stretching, climbing, growing, and morphing would not be possible with an approach based only on rigid links. The challenge ahead for soft robotics is to further develop the abilities for robots to grow, evolve, self-heal, develop, and biodegrade, which are the ways that robots can adapt their morphology to the environment.

831 citations


Cites background from "Continuum Robots for Medical Applic..."

  • ...For example, in the biomedical field, surgical instruments are an ideal application for soft robotics (55), and soft robotics is finding applications in rehabilitation (56) and assistance (57–59)....

    [...]

Journal ArticleDOI
TL;DR: This Review investigates soft robots for biomedical applications, including soft tools for surgery, diagnosis and drug delivery, wearable and assistive devices, prostheses, artificial organs and tissue-mimicking active simulators for training and biomechanical studies.
Abstract: Soft robotics enables the design of soft machines and devices at different scales. The compliance and mechanical properties of soft robots make them especially interesting for medical applications. Depending on the level of interaction with humans, different levels of biocompatibility and biomimicry are required for soft materials used in robots. In this Review, we investigate soft robots for biomedical applications, including soft tools for surgery, diagnosis and drug delivery, wearable and assistive devices, prostheses, artificial organs and tissue-mimicking active simulators for training and biomechanical studies. We highlight challenges regarding durability and reliability, and examine traditional and novel soft and active materials as well as different actuation strategies. Finally, we discuss future approaches and applications in the field. Soft robots have broad applications in medicine. In this Review, biomedical applications, including surgery, drug delivery, prostheses, wearable devices and artificial organs, are discussed in the context of materials, actuation strategies and challenges.

720 citations

Journal ArticleDOI
28 Aug 2019
TL;DR: A submillimeter-scale, self-lubricating soft continuum robot with omnidirectional steering and navigating capabilities based on magnetic actuation, enabled by programming ferromagnetic domains in its soft body while growing hydrogel skin on its surface is presented.
Abstract: Small-scale soft continuum robots capable of active steering and navigation in a remotely controllable manner hold great promise in diverse areas, particularly in medical applications. Existing continuum robots, however, are often limited to millimeter or centimeter scales due to miniaturization challenges inherent in conventional actuation mechanisms, such as pulling mechanical wires, inflating pneumatic or hydraulic chambers, or embedding rigid magnets for manipulation. In addition, the friction experienced by the continuum robots during navigation poses another challenge for their applications. Here, we present a submillimeter-scale, self-lubricating soft continuum robot with omnidirectional steering and navigating capabilities based on magnetic actuation, which are enabled by programming ferromagnetic domains in its soft body while growing hydrogel skin on its surface. The robot's body, composed of a homogeneous continuum of a soft polymer matrix with uniformly dispersed ferromagnetic microparticles, can be miniaturized below a few hundreds of micrometers in diameter, and the hydrogel skin reduces the friction by more than 10 times. We demonstrate the capability of navigating through complex and constrained environments, such as a tortuous cerebrovascular phantom with multiple aneurysms. We further demonstrate additional functionalities, such as steerable laser delivery through a functional core incorporated in the robot's body. Given their compact, self-contained actuation and intuitive manipulation, our ferromagnetic soft continuum robots may open avenues to minimally invasive robotic surgery for previously inaccessible lesions, thereby addressing challenges and unmet needs in healthcare.

594 citations


Cites background from "Continuum Robots for Medical Applic..."

  • ...To cope with the substantial friction experienced while navigating highly unstructured environments (5, 32), we grew hydrogel skin (33), a thin (10 to 25 m) layer of hydrated cross-linked polymers, onto the robot’s surface....

    [...]

  • ...Surgeons benefit from remotely controlled continuum robots, which allow them to work away from the radiation source required for real-time imaging during operations (5, 6)....

    [...]

Journal ArticleDOI
22 Apr 2020
TL;DR: This Review explores the emerging confluence of e-skins and machine learning, with a focus on how roboticists can combine recent developments from the two fields to build autonomous, deployable soft robots, integrated with capabilities for informative touch and proprioception to stand up to the challenges of real-world environments.
Abstract: Soft robots have garnered interest for real-world applications because of their intrinsic safety embedded at the material level. These robots use deformable materials capable of shape and behavioral changes and allow conformable physical contact for manipulation. Yet, with the introduction of soft and stretchable materials to robotic systems comes a myriad of challenges for sensor integration, including multimodal sensing capable of stretching, embedment of high-resolution but large-area sensor arrays, and sensor fusion with an increasing volume of data. This Review explores the emerging confluence of e-skins and machine learning, with a focus on how roboticists can combine recent developments from the two fields to build autonomous, deployable soft robots, integrated with capabilities for informative touch and proprioception to stand up to the challenges of real-world environments.

290 citations

References
More filters
BookDOI
01 Nov 2007
TL;DR: The contents have been restructured to achieve four main objectives: the enlargement of foundational topics for robotics, the enlightenment of design of various types of robotic systems, the extension of the treatment on robots moving in the environment, and the enrichment of advanced robotics applications.
Abstract: The second edition of this handbook provides a state-of-the-art cover view on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the Springer Handbook of Robotics. The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organizations Award for Engineering & Technology. The second edition of the handbook, edited by two internationally renowned scientists with the support of an outstanding team of seven part editors and more than 200 authors, continues to be an authoritative reference for robotics researchers, newcomers to the field, and scholars from related disciplines. The contents have been restructured to achieve four main objectives: the enlargement of foundational topics for robotics, the enlightenment of design of various types of robotic systems, the extension of the treatment on robots moving in the environment, and the enrichment of advanced robotics applications. Further to an extensive update, fifteen new chapters have been introduced on emerging topics, and a new generation of authors have joined the handbooks team. A novel addition to the second edition is a comprehensive collection of multimedia references to more than 700 videos, which bring valuable insight into the contents. The videos can be viewed directly augmented into the text with a smartphone or tablet using a unique and specially designed app.

3,174 citations

Book
01 Jan 1994
TL;DR: This book discusses the theory and applications of Bifurcation Theory and its applications to Elasticity, as well as problems in Nonlinear Elasticity and Dynamical Problems.
Abstract: Preface* Chapter 1. Background* Chapter 2. The Equations of Motion for Extensible Strings* Chapter 3. Elementary Problems for Elastic Strings* Chapter 4. Planar Steady-State Problems for Elastic Rods* Chapter 5. Introduction to Bifurcation Theory and it's Applications to Elasticity* Chapter 6. Global Bifurcation Problems for Strings and Rods* Chapter 7. Variational Methods* Chapter 8. Theory of Rods Deforming in Space* Chapter 9. Spatial Problems for Rods* Chapter 10. Axisymmetric Equilibria of Shells* Chapter 11. Tensors* Chapter 12. 3-Dimensional Continuum* Chapter 13. 3-Dimensional Theory of Nonlinear Elasticity* Chapter 14. Problems in Nonlinear Elasticity* Chapter 15. Large-Strain Plasticity* Chapter 16. General Theories of Rods* Chapter 17. General Theories of Shells* Chapter 18. Dynamical Problems* Chapter 19. Appendix: Topics in Linear Analysis* Chapter 20. Appendix: Local Nonlinear Analysis* Chapter 21. Appendix: Degree Theory and it's Applications* References* Index

1,888 citations


"Continuum Robots for Medical Applic..." refers background or methods in this paper

  • ...equations can be derived straightforwardly by considering the equilibrium of a section of rod [as in Antman’s approach [127]) and as shown in Fig....

    [...]

  • ...since the Cosserat brothers (Eugene and Francois) originally developed them in the early 20th century, and nonlinear elasticity research such as Antman’s [127] has been a resource for several...

    [...]

Journal ArticleDOI
TL;DR: Emerging soft-bodied robotic systems are reviewed to endow robots with new, bioinspired capabilities that permit adaptive, flexible interactions with unpredictable environments and to reduce the mechanical and algorithmic complexity involved in robot design.

1,604 citations

Journal ArticleDOI
TL;DR: This discussion elucidates what has been articulated in different ways by a number of researchers in the past several years, namely that constant-curvature kinematics can be considered as consisting of two separate submappings: one that is general and applies to all continuum robots, and another that is robot-specific.
Abstract: Continuum robotics has rapidly become a rich and diverse area of research, with many designs and applications demonstrated. Despite this diversity in form and purpose, there exists remarkable similarity in the fundamental simplified kinematic models that have been applied to continuum robots. However, this can easily be obscured, especially to a newcomer to the field, by the different applications, coordinate frame choices, and analytical formalisms employed. In this paper we review several modeling approaches in a common frame and notational convention, illustrating that for piecewise constant curvature, they produce identical results. This discussion elucidates what has been articulated in different ways by a number of researchers in the past several years, namely that constant-curvature kinematics can be considered as consisting of two separate submappings: one that is general and applies to all continuum robots, and another that is robot-specific. These mappings are then developed both for the single-section and for the multi-section case. Similarly, we discuss the decomposition of differential kinematics (the robotâ??s Jacobian) into robot-specific and robot-independent portions. The paper concludes with a perspective on several of the themes of current research that are shaping the future of continuum robotics.

1,600 citations


"Continuum Robots for Medical Applic..." refers background in this paper

  • ...Section II gives an overview of the robotics science that underlies all medical continuum robot systems, organized by the broad themes of design, modeling, and control....

    [...]

  • ...Kinematically, continuum robot structures possess infinitely many DOFs....

    [...]

  • ...Active model-based impedance control using sensor measurements of actuator force and robot deflection has also been shown to address the compliance/strength tradeoff from a higher level control framework [99], [100], but flexibility may still limit the maximum force the robot can apply....

    [...]

Journal ArticleDOI
TL;DR: Otsuka et al. as mentioned in this paper showed a one-to-one correspondence between shape memory effect and the thermoelastic martensitic transformation in a Cu-AI-Ni alloy.
Abstract: In some alloys, a given plastic strain recovers completely when the con­ cerned alloy is heated above a certain temperature. This phenomenon, shape memory effect (SME), was observed in Au-Cd (1) and In-Tl (2) alloys in the first half of 1950s. However, SME was not a focus of research until it was found in a Ti-Ni alloy (3) in 1963, when the phenomenon was first termed the shape memory effect. A similar phenomenon was found in a Cu-AI-Ni alloy as well (3a). At that time, however, SME was considered to be a peculiar phenomenon limited to the specific Ti-Ni alloy. In 1970, Otsuka & Shimizu (4, 4a) unambiguously demonstrated a one­ to-one correspondence between SME and the thermoelastic martensitic transformation in a Cu-AI-Ni alloy. Thus, they concluded that SME is characteristic of alloys exhibiting thermoelastic martensitic trans­ formations. They ascribed the origin to the crystallographic reversibility of the thermoelastic transformation and the presence of a recoverable deformation mode, i.e. twinning, in thermoelastic alloys. Since then, there

1,497 citations