Contrast Optimization using Elitist Metaheuristic Optimization and Gradient Approximation for Biomedical Image Enhancement
01 Feb 2019-pp 712-717
TL;DR: A contrast optimization method based on well-known metaheuristic technique called genetic algorithm with elitism is used that can enhance the biomedical images for better analysis that can illustrate the efficiency of the proposed algorithm.
Abstract: Biomedical image analysis is one of the most challenging and inevitable part of the computer aided diagnostic systems. Automated analysis of the image can detect various diseases automatically without human intervention. Computer vision and artificial intelligence can sometimes defeat human diagnostic power and can reveal some hidden information from the biomedical images. In the field of health care, accurate results are highly required within stipulated amount of time. But to increase accuracy, proper preprocessing with sophisticated algorithms is required. Low quality image can affect processing algorithm which can leads to the poor result. Therefore, sophisticated preprocessing methods are required to get reliable results. Contrast is one of the most important parameter for any image. Poor contrast may cause several problems for computer vision algorithms. Conventional algorithms for contrast adjustment may not be suitable for many purposes. Sometimes, these methods can generate some images that may lose some critical information. In this work, a contrast optimization method based on well-known metaheuristic technique called genetic algorithm with elitism is used that can enhance the biomedical images for better analysis. A new kernel has been proposed to detect the edges. Obtained results illustrate the efficiency of the proposed algorithm.
Citations
More filters
01 Jan 2020
TL;DR: In this chapter, a comprehensive overview of the deep learning-assisted biomedical image analysis methods is presented and can be helpful for the researchers to understand the recent developments and drawbacks of the present systems.
Abstract: Biomedical image analysis methods are gradually shifting towards computer-aided solutions from manual investigations to save time and improve the quality of the diagnosis. Deep learning-assisted biomedical image analysis is one of the major and active research areas. Several researchers are working in this domain because deep learning-assisted computer-aided diagnostic solutions are well known for their efficiency. In this chapter, a comprehensive overview of the deep learning-assisted biomedical image analysis methods is presented. This chapter can be helpful for the researchers to understand the recent developments and drawbacks of the present systems. The discussion is made from the perspective of the computer vision, pattern recognition, and artificial intelligence. This chapter can help to get future research directions to exploit the blessings of deep learning techniques for biomedical image analysis.
28 citations
01 Jan 2020
TL;DR: This chapter proposes a new filter (kernel), and the compass operator is applied on it to detect edges more efficiently, and the results are compared with some of the previously proposed filters both qualitatively and quantitatively.
Abstract: Image segmentation has been an active topic of research for many years. Edges characterize boundaries, and therefore, detection of edges is a problem of fundamental importance in image processing. Edge detection in images significantly reduces the amount of data and filters out useless information while preserving the important structural properties in an image. Edges carry significant information about the image structure and shape, which is useful in various applications related with computer vision. In many applications, the edge detection is used as a pre-processing step. Edge detection is highly beneficial in automated cell counting, structural analysis of the image, automated object detection, shape analysis, optical character recognition, etc. Different filters are developed to find the gradients and detect edges. In this chapter, a new filter (kernel) is proposed, and the compass operator is applied on it to detect edges more efficiently. The results are compared with some of the previously proposed filters both qualitatively and quantitatively.
24 citations
TL;DR: The proposed FEMO approach does not have any dependency on the initial selection of the cluster centers and can efficiently determine the optimal clusters, and is compared with some standard metaheuristics and evolutionary methods.
Abstract: In this work, a new unsupervised classification approach is proposed for the biomedical image segmentation. The proposed method will be known as Fuzzy Electromagnetism Optimization (FEMO). As the name suggests, the proposed approach is based on the electromagnetism-like optimization (EMO) method. The EMO method is extended, modified, and combined with the modified type 2 fuzzy C-Means algorithm to improve its efficiency especially for biomedical image segmentation. The proposed FEMO method uses fuzzy membership and the electromagnetism-like optimization method to locate the optimal positions for the cluster centers. The proposed FEMO approach does not have any dependency on the initial selection of the cluster centers. Moreover, this method is suitable for the biomedical images of different modalities. This method is compared with some standard metaheuristics and evolutionary methods (e.g. Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Electromagnetism-like optimization (EMO), Ant Colony Optimization (ACO), etc.) based image segmentation approaches. Four different indices Davies–Bouldin, Xie–Beni, Dunn and β index are used for the comparison and evaluation purpose. For the GA, PSO, ACO, EMO and the proposed FEMO approach, the optimal average value of the Davies–Bouldin index is 1.833578359 (8 clusters), 1.669359475 (3 clusters), 1.623119284 (3 clusters), 1.647743907 (4 clusters) and 1.456889343 (3 clusters) respectively. It shows that the proposed approach can efficiently determine the optimal clusters. Moreover, the results of the other quantitative indices are quite promising for the proposed approach compared to the other approaches The detailed comparison is performed in both qualitative and quantitative manner and it is found that the proposed method outperforms some of the existing methods concerning some standard evaluation parameters.
20 citations
17 Aug 2019
TL;DR: In this work, DNA encryption and its different approaches are discussed to give a brief overview on the data security methods based on DNA encryption.
Abstract: Security of the digital data is one of the major concerns of the today’s world. There are several methods for digital data security that can be found in the literature. Biological sequences have some features that make it worthy for the digital data security processes. In this work, DNA encryption and its different approaches are discussed to give a brief overview on the data security methods based on DNA encryption. This work can be highly beneficial for future research on DNA encryption and can be applied on different domains.
20 citations
17 Aug 2019
TL;DR: A secure and lossless encryption method is developed in this work and various numerical parameters are used to evaluate the performance of the proposed method which proves the effectiveness of the algorithm.
Abstract: Biomedical image analysis is an integral part of the modern healthcare industry and has a huge impact on the modern world. Automated computer-aided systems are highly beneficial for fast, accurate and efficient diagnosis of the biomedical images. Remote healthcare systems allow doctors and patients to perform their jobs from separate geographic locations. Moreover, expert opinion about a patient can be obtained from a doctor who is in a different country or in some distant location within stipulated amount of time. Remote healthcare systems require digital biomedical images to be transferred over the network. But several security threats are associated with the transmission of the biomedical images. Privacy of the patients must be preserved by keeping the images safe from any unauthorized access. Moreover, the contents of the biomedical images must be preserved efficiently so that no one can tamper it. Data tampering can produce drastic results in many cases. In this work, a method for biomedical image security has been proposed. DNA encryption method is one of the emerging methods in the field of cryptography. A secure and lossless encryption method is developed in this work. Various numerical parameters are used to evaluate the performance of the proposed method which proves the effectiveness of the algorithm.
15 citations
References
More filters
TL;DR: A real-time computer vision and machine learning system for modeling and recognizing human behaviors in a visual surveillance task and demonstrates the ability to use these a priori models to accurately classify real human behaviors and interactions with no additional tuning or training.
Abstract: We describe a real-time computer vision and machine learning system for modeling and recognizing human behaviors in a visual surveillance task. The system deals in particularly with detecting when interactions between people occur and classifying the type of interaction. Examples of interesting interaction behaviors include following another person, altering one's path to meet another, and so forth. Our system combines top-down with bottom-up information in a closed feedback loop, with both components employing a statistical Bayesian approach. We propose and compare two different state-based learning architectures, namely, HMMs and CHMMs for modeling behaviors and interactions. Finally, a synthetic "Alife-style" training system is used to develop flexible prior models for recognizing human interactions. We demonstrate the ability to use these a priori models to accurately classify real human behaviors and interactions with no additional tuning or training.
1,831 citations
"Contrast Optimization using Elitist..." refers background in this paper
...Computer vision can sometimes surpass the human vision [2]–[5]....
[...]
TL;DR: A general framework based on histogram equalization for image contrast enhancement, and a low-complexity algorithm for contrast enhancement is presented, and its performance is demonstrated against a recently proposed method.
Abstract: A general framework based on histogram equalization for image contrast enhancement is presented. In this framework, contrast enhancement is posed as an optimization problem that minimizes a cost function. Histogram equalization is an effective technique for contrast enhancement. However, a conventional histogram equalization (HE) usually results in excessive contrast enhancement, which in turn gives the processed image an unnatural look and creates visual artifacts. By introducing specifically designed penalty terms, the level of contrast enhancement can be adjusted; noise robustness, white/black stretching and mean-brightness preservation may easily be incorporated into the optimization. Analytic solutions for some of the important criteria are presented. Finally, a low-complexity algorithm for contrast enhancement is presented, and its performance is demonstrated against a recently proposed method.
794 citations
"Contrast Optimization using Elitist..." refers methods in this paper
...One is called direct method and another one is known as indirect method [28]....
[...]
TL;DR: In this article, a generalized notion of superposition has been used for nonlinear filtering of signals which can be expressed as products or as convolutions of components in audio dynamic range compression and expansion, image enhancement with applications to bandwidth reduction, echo removal, and speech waveform processing.
Abstract: An approach to some nonlinear filtering problems through a generalized notion of superposition has proven useful In this paper this approach is investigated for the nonlinear filtering of signals which can be expressed as products or as convolutions of components. The applications of this approach in audio dynamic range compression and expansion, image enhancement with applications to bandwidth reduction, echo removal, and speech waveform processing are presented.
383 citations
Additional excerpts
...These are histogram manipulation, non-linear filtering and transformation [4]....
[...]
TL;DR: A novel adaptive direct fuzzy contrast enhancement method based on the fuzzy entropy principle and fuzzy set theory is proposed that is very effective in contrast enhancement as well as in preventing over-enhancement.
Abstract: Contrast enhancement is one of the most important issues of image processing, pattern recognition and computer vision. The commonly used techniques for contrast enhancement fall into two categories: (1) indirect methods of contrast enhancement and (2) direct methods of contrast enhancement. Indirect approaches mainly modify histogram by assigning new values to the original intensity levels. Histogram specification and histogram equalization are two popular indirect contrast enhancement methods. However, histogram modification technique only stretches the global distribution of the intensity. The basic idea of direct contrast enhancement methods is to establish a criterion of contrast measurement and to enhance the image by improving the contrast measure. The contrast can be measured globally and locally. It is more reasonable to define a local contrast when an image contains textual information. Fuzzy logic has been found many applications in image processing, pattern recognition, etc. Fuzzy set theory is a useful tool for handling the uncertainty in the images associated with vagueness and/or imprecision. In this paper, we propose a novel adaptive direct fuzzy contrast enhancement method based on the fuzzy entropy principle and fuzzy set theory. We have conducted experiments on many images. The experimental results demonstrate that the proposed algorithm is very effective in contrast enhancement as well as in preventing over-enhancement.
175 citations
"Contrast Optimization using Elitist..." refers methods in this paper
...The genetic algorithm based procedure may be suitable in those situations and can produce enhanced image by optimizing the contrast and keeping the actual structure and look of the image which will be beneficial for both computer vision and human vision [30]....
[...]
TL;DR: In this article, the authors used image processing technique to detect the maturity stage of fresh banana fruit by its color and size value of their images precisely, and two classifier algorithms namely, mean color intensity algorithm and area algorithm were developed and their accuracy on maturity detection was assessed.
Abstract: Maturity stage of fresh banana fruit is an important factor that affects the fruit quality during ripening and marketability after ripening. The ability to identify maturity of fresh banana fruit will be a great support for farmers to optimize harvesting phase which helps to avoid harvesting either under-matured or over-matured banana. This study attempted to use image processing technique to detect the maturity stage of fresh banana fruit by its color and size value of their images precisely. A total of 120 images comprising 40 images from each stage such as under-mature, mature and over-mature were used for developing algorithm and accuracy prediction. The mean color intensity from histogram; area, perimeter, major axis length and minor axis length from the size values, were extracted from the calibration images. Analysis of variance between each maturity stage on these features indicated that the mean color intensity and area features were more significant in predicting the maturity of banana fruit. Hence, two classifier algorithms namely, mean color intensity algorithm and area algorithm were developed and their accuracy on maturity detection was assessed. The mean color intensity algorithm showed 99.1 % accuracy in classifying the banana fruit maturity. The area algorithm classified the under-mature fruit at 85 % accuracy. Hence the maturity assessment technique proposed in this paper could be used commercially to develop a field based complete automatic detection system to take decision on the right time of harvest by the banana growers.
104 citations