scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Contributions of Two Nuclear Localization Signals of Influenza A Virus Nucleoprotein to Viral Replication

01 Jan 2007-Journal of Virology (American Society for Microbiology)-Vol. 81, Iss: 1, pp 30-41
TL;DR: The results indicate that while the unconventional NLS is not essential for viral replication, it is necessary for efficient viral mRNA synthesis and was essential for vRNA transcription and NP's nucleolar accumulation.
Abstract: The RNA genome of influenza A virus, which forms viral ribonucleoprotein complexes (vRNPs) with viral polymerase subunit proteins (PA, PB1, and PB2) and nucleoprotein (NP), is transcribed and replicated in the nucleus. NP, the major component of vRNPs, has at least two amino acid sequences that serve as nuclear localization signals (NLSs): an unconventional NLS (residues 3 to 13; NLS1) and a bipartite NLS (residues 198 to 216; NLS2). Although both NLSs are known to play a role in nuclear transport, their relative contributions to viral replication are poorly understood. We therefore investigated their contributions to NP subcellular/subnuclear localization, viral RNA (vRNA) transcription, and viral replication. Abolishing the unconventional NLS caused NP to localize predominantly to the cytoplasm and affected its activity in vRNA transcription. However, we were able to create a virus whose NP contained amino acid substitutions in NLS1 known to abolish its nuclear localization function, although this virus was highly attenuated. These results indicate that while the unconventional NLS is not essential for viral replication, it is necessary for efficient viral mRNA synthesis. On the other hand, the bipartite NLS, whose contribution to the nuclear transport of NP is limited, was essential for vRNA transcription and NP9s nucleolar accumulation. A virus with nonfunctional NLS2 could not be generated. Thus, the bipartite NLS, but not the unconventional NLS, of NP is essential for influenza A virus replication.
Citations
More filters
Journal ArticleDOI
TL;DR: This Review discusses current knowledge about vRNP trafficking within host cells and the function of these complexes in the context of the virus life cycle, highlighting how structure contributes to function and the crucial interactions with host cell pathways, as well as on the information gaps that remain.
Abstract: Influenza A viral ribonucleoprotein (vRNP) complexes comprise the eight genomic negative-sense RNAs, each of which is bound to multiple copies of the vRNP and a trimeric viral polymerase complex. The influenza virus life cycle centres on the vRNPs, which in turn rely on host cellular processes to carry out functions that are necessary for the successful completion of the virus life cycle. In this Review, we discuss our current knowledge about vRNP trafficking within host cells and the function of these complexes in the context of the virus life cycle, highlighting how structure contributes to function and the crucial interactions with host cell pathways, as well as on the information gaps that remain. An improved understanding of how vRNPs use host cell pathways is essential to identify mechanisms of virus pathogenicity, host adaptation and, ultimately, new targets for antiviral intervention.

330 citations

Journal ArticleDOI
TL;DR: The current understanding of these important processes leading to the production of infectious influenza virus particles is provided to facilitate bud fission and bud release.

311 citations

Journal ArticleDOI
TL;DR: It is concluded that the vast majority of virions contain no more than eight segments and that a specific mechanism does indeed function to select one copy of each vRNA.
Abstract: The negative-sense RNA genome of influenza A virus is composed of eight segments, which encode 12 proteins between them. At the final stage of viral assembly, these genomic virion (v)RNAs are incorporated into the virion as it buds from the apical plasma membrane of the cell. Genome segmentation confers evolutionary advantages on the virus, but also poses a problem during virion assembly as at least one copy of each of the eight segments is required to produce a fully infectious virus particle. Historically, arguments have been presented in favour of a specific packaging mechanism that ensures incorporation of a full genome complement, as well as for an alternative model in which segments are chosen at random but packaged in sufficient numbers to ensure that a reasonable proportion of virions are viable. The question has seen a resurgence of interest in recent years leading to a consensus that the vast majority of virions contain no more than eight segments and that a specific mechanism does indeed function to select one copy of each vRNA. This review summarizes work leading to this conclusion. In addition, we describe recent progress in identifying the specific packaging signals and discuss likely mechanisms by which these RNA elements might operate.

303 citations

Journal ArticleDOI
TL;DR: It is reported that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals.
Abstract: Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals.

296 citations


Cites methods from "Contributions of Two Nuclear Locali..."

  • ...To assess the viral polymerase activity, we performed luciferase activity-based minireplicon assay as described previously [15] using the following plasmids; expression plasmids for Cal04-PB2, PB1, -PA, and -NP (0....

    [...]

  • ...These variants were assessed for their polymerase activity in minireplicon assays, essentially as described [15]....

    [...]

Journal ArticleDOI
21 Dec 2012-Science
TL;DR: The structures reveal how the viral polymerase, RNA genome, and nucleoprotein interact in the RNP provide insight into mechanisms for influenza genome replication and transcription, and the structure of native RNPs derived from virions is described.
Abstract: The influenza viruses cause annual epidemics of respiratory disease and occasional pandemics, which constitute a major public-health issue. The segmented negative-stranded RNAs are associated with the polymerase complex and nucleoprotein (NP), forming ribonucleoproteins (RNPs), which are responsible for virus transcription and replication. We describe the structure of native RNPs derived from virions. They show a double-helical conformation in which two NP strands of opposite polarity are associated with each other along the helix. Both strands are connected by a short loop at one end of the particle and interact with the polymerase complex at the other end. This structure will be relevant for unraveling the mechanisms of nuclear import of parental virus RNPs, their transcription and replication, and the encapsidation of progeny RNPs into virions.

262 citations

References
More filters
Journal ArticleDOI
15 Dec 1991-Gene
TL;DR: The results showed that high concentrations of G418 efficiently yielded L cell and CHO cell transfectants stably producing IL-2 at levels comparable with those previously attained using gene amplification.

4,971 citations

Journal ArticleDOI
TL;DR: A focus of this review is nuclear export of messenger RNA, which apparently largely relies on export mediators distinct from importin beta-related factors.
Abstract: ▪ Abstract The compartmentation of eukaryotic cells requires all nuclear proteins to be imported from the cytoplasm, whereas, for example, transfer RNAs, messenger RNAs, and ribosomes are made in the nucleus and need to be exported to the cytoplasm. Nuclear import and export proceed through nuclear pore complexes and can occur along a great number of distinct pathways, many of which are mediated by importin β-related nuclear transport receptors. These receptors shuttle between nucleus and cytoplasm, and they bind transport substrates either directly or via adapter molecules. They all cooperate with the RanGTPase system to regulate the interactions with their cargoes. Another focus of our review is nuclear export of messenger RNA, which apparently largely relies on export mediators distinct from importin β-related factors. We discuss mechanistic aspects and the energetics of transport receptor function and describe a number of pathways in detail.

2,012 citations

Journal ArticleDOI
01 Nov 1988-Genetics
TL;DR: The feasibility of IPCR is shown by amplifying the sequences that flank an IS1 element in the genome of a natural isolate of Escherichia coli.
Abstract: A method is presented for the rapid in vitro amplification of DNA sequences that flank a region of known sequence. The method uses the polymerase chain reaction (PCR), but it has the primers oriented in the reverse direction of the usual orientation. The template for the reverse primers is a restriction fragment that has been ligated upon itself to form a circle. This procedure of inverse PCR (IPCR) has many applications in molecular genetics, for example, the amplification and identification of sequences flanking transposable elements. In this paper we show the feasibility of IPCR by amplifying the sequences that flank an IS1 element in the genome of a natural isolate of Escherichia coli.

1,953 citations

Journal ArticleDOI
TL;DR: A new reverse-genetics system that allows one to efficiently generate influenza A viruses entirely from cloned cDNAs is described, which should be useful in viral mutagenesis studies and in the production of vaccines and gene therapy vectors.
Abstract: We describe a new reverse-genetics system that allows one to efficiently generate influenza A viruses entirely from cloned cDNAs. Human embryonic kidney cells (293T) were transfected with eight plasmids, each encoding a viral RNA of the A/WSN/33 (H1N1) or A/PR/8/34 (H1N1) virus, flanked by the human RNA polymerase I promoter and the mouse RNA polymerase I terminator—together with plasmids encoding viral nucleoprotein and the PB2, PB1, and PA viral polymerases. This strategy yielded >1 × 103 plaque-forming units (pfu) of virus per ml of supernatant at 48 hr posttransfection. The addition of plasmids expressing all of the remaining viral structural proteins led to a substantial increase in virus production, 3 × 104–5 × 107 pfu/ml. We also used reverse genetics to generate a reassortant virus containing the PB1 gene of the A/PR/8/34 virus, with all other genes representing A/WSN/33. Additional viruses produced by this method had mutations in the PA gene or possessed a foreign epitope in the head of the neuraminidase protein. This efficient system, which does not require helper virus infection, should be useful in viral mutagenesis studies and in the production of vaccines and gene therapy vectors.

1,325 citations