scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Control strategies for active lower extremity prosthetics and orthotics: a review

TL;DR: This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic P/O devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user’s sensory-motor control system.
Abstract: Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user. This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic (P/O) devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user’s sensory-motor control system. This review underscores the practical challenges and opportunities associated with P/O control, which can be used to accelerate future developments in this field. Furthermore, this work provides a classification scheme for the comparison of the various control strategies. As a novel contribution, a general framework for the control of portable gait-assistance devices is proposed. This framework accounts for the physical and informatic interactions between the controller, the user, the environment, and the mechanical device itself. Such a treatment of P/Os – not as independent devices, but as actors within an ecosystem – is suggested to be necessary to structure the next generation of intelligent and multifunctional controllers. Each element of the proposed framework is discussed with respect to the role that it plays in the assistance of locomotion, along with how its states can be sensed as inputs to the controller. The reviewed controllers are shown to fit within different levels of a hierarchical scheme, which loosely resembles the structure and functionality of the nominal human central nervous system (CNS). Active and passive safety mechanisms are considered to be central aspects underlying all of P/O design and control, and are shown to be critical for regulatory approval of such devices for real-world use. The works discussed herein provide evidence that, while we are getting ever closer, significant challenges still exist for the development of controllers for portable powered P/O devices that can seamlessly integrate with the user’s neuromusculoskeletal system and are practical for use in locomotive ADL.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
01 Feb 2017
TL;DR: Current lower limb robotic exoskeletons are described, with specific regard to common trends in the field, and a number of emerging technologies could deliver substantial advantages to existing and future exoskeleton designs.
Abstract: Research on robotic exoskeletons has rapidly expanded over the previous decade. Advances in robotic hardware and energy supplies have enabled viable prototypes for human testing. This review paper describes current lower limb robotic exoskeletons, with specific regard to common trends in the field. The preponderance of published literature lacks rigorous quantitative evaluations of exoskeleton performance, making it difficult to determine the disadvantages and drawbacks of many of the devices. We analyzed common approaches in exoskeleton design and the convergence, or lack thereof, with certain technologies. We focused on actuators, sensors, energy sources, materials, and control strategies. One of the largest hurdles to be overcome in exoskeleton research is the user interface and control. More intuitive and flexible user interfaces are needed to increase the success of robotic exoskeletons. In the last section, we discuss promising future solutions to the major hurdles in exoskeleton control. A number of emerging technologies could deliver substantial advantages to existing and future exoskeleton designs. We conclude with a listing of the advantages and disadvantages of the emerging technologies and discuss possible futures for the field.

592 citations

Journal ArticleDOI
TL;DR: Brain-machine interfaces research has been at the forefront of many neurophysiological discoveries, including the demonstration that, through continuous use, artificial tools can be assimilated by the primate brain's body schema.
Abstract: Brain-machine interfaces (BMIs) combine methods, approaches, and concepts derived from neurophysiology, computer science, and engineering in an effort to establish real-time bidirectional links bet...

373 citations


Additional excerpts

  • ...169, 281, 411, 511, 663, 833), operation of a hand orthosis under BMI control (434, 436, 534, 610, 628), and BMIcontrolled leg exoskeletons (156, 205, 282, 425, 456, 768, 812)....

    [...]

Journal ArticleDOI
TL;DR: This work reviewed the literature through December 2019, and identified 23 studies that demonstrate exoskeleton designs that improved human walking and running economy beyond capable without a device.
Abstract: Since the early 2000s, researchers have been trying to develop lower-limb exoskeletons that augment human mobility by reducing the metabolic cost of walking and running versus without a device. In 2013, researchers finally broke this ‘metabolic cost barrier’. We analyzed the literature through December 2019, and identified 23 studies that demonstrate exoskeleton designs that improved human walking and running economy beyond capable without a device. Here, we reviewed these studies and highlighted key innovations and techniques that enabled these devices to surpass the metabolic cost barrier and steadily improve user walking and running economy from 2013 to nearly 2020. These studies include, physiologically-informed targeting of lower-limb joints; use of off-board actuators to rapidly prototype exoskeleton controllers; mechatronic designs of both active and passive systems; and a renewed focus on human-exoskeleton interface design. Lastly, we highlight emerging trends that we anticipate will further augment wearable-device performance and pose the next grand challenges facing exoskeleton technology for augmenting human mobility.

215 citations

Journal ArticleDOI
TL;DR: This review critically evaluates research progress in human gait analysis and systematically summarizes developments in the mechanical design and control of lower limb rehabilitation exoskeleton robots.
Abstract: Lower limb rehabilitation exoskeleton robots integrate sensing, control, and other technologies and exhibit the characteristics of bionics, robotics, information and control science, medicine, and other interdisciplinary areas. In this review, the typical products and prototypes of lower limb exoskeleton rehabilitation robots are introduced and state-of-the-art techniques are analyzed and summarized. Because the goal of rehabilitation training is to recover patients’ sporting ability to the normal level, studying the human gait is the foundation of lower limb exoskeleton rehabilitation robot research. Therefore, this review critically evaluates research progress in human gait analysis and systematically summarizes developments in the mechanical design and control of lower limb rehabilitation exoskeleton robots. From the performance of typical prototypes, it can be deduced that these robots can be connected to human limbs as wearable forms; further, it is possible to control robot movement at each joint to simulate normal gait and drive the patient’s limb to realize robot-assisted rehabilitation training. Therefore human–robot integration is one of the most important research directions, and in this context, rigid-flexible-soft hybrid structure design, customized personalized gait generation, and multimodal information fusion are three key technologies.

211 citations

Journal ArticleDOI
TL;DR: The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible, and the development of an asynchronous brain-machine interface (BMI), based on steady-state visual evoked potentials (SSVEPs).
Abstract: Objective. We have developed an asynchronous brain–machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.

183 citations


Cites background from "Control strategies for active lower..."

  • ...Furthermore, significant challenges still exist for the development of a lower limb exoskeleton that can integrate with the user’s neuromusculoskeletal system [43]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: It is shown that components of the manipulator impedance may be combined by superposition even when they are nonlinear, and a generalization of a Norton equivalent network is defined for a broad class of nonlinear manipulators which separates the control of motion from theControl of impedance while preserving the superposition properties of the Norton network.
Abstract: Manipulation fundamentally requires the manipulator to be mechanically coupled to the object being manipulated; the manipulator may not be treated as an isolated system. This three-part paper presents an approach to the control of dynamic interaction between a manipulator and its environment. In Part I this approach is developed by considering the mechanics of interaction between physical systems. Control of position or force alone is inadequate; control of dynamic behavior is also required. It is shown that as manipulation is a fundamentally nonlinear problem, the distinction between impedance and admittance is essential, and given the environment contains inertial objects, the manipulator must be an impedance. A generalization of a Norton equivalent network is defined for a broad class of nonlinear manipulators which separates the control of motion from the control of impedance while preserving the superposition properties of the Norton network. It is shown that components of the manipulator impedance may be combined by superposition even when they are nonlinear.

3,356 citations


"Control strategies for active lower..." refers background in this paper

  • ...Impedance is defined as the transfer function between an input flow and a n output effort [202]....

    [...]

Journal ArticleDOI
TL;DR: Considerable evidence now documents that the most effective (and cost-effective) fall reduction programmes have involved systematic fall risk assessment and targeted interventions, exercise programmes and environmental-inspection and hazard-reduction programmes.
Abstract: Falls are a common and often devastating problem among older people, causing a tremendous amount of morbidity, mortality and use of health care services including premature nursing home admissions. Most of these falls are associated with one or more identifiable risk factors (e.g. weakness, unsteady gait, confusion and certain medications), and research has shown that attention to these risk factors can significantly reduce rates of falling. Considerable evidence now documents that the most effective (and cost-effective) fall reduction programmes have involved systematic fall risk assessment and targeted interventions, exercise programmes and environmental-inspection and hazard-reduction programmes. These findings have been substantiated by careful meta-analysis of large numbers of controlled clinical trials and by consensus panels of experts who have developed evidence-based practice guidelines for fall prevention and management. Medical assessment of fall risks and provision of appropriate interventions are challenging because of the complex nature of falls. Optimal approaches involve interdisciplinary collaboration in assessment and interventions, particularly exercise, attention to co-existing medical conditions and environmental inspection and hazard abatement.

2,775 citations


"Control strategies for active lower..." refers background in this paper

  • ...The risks are also not limited to physical harm, but may a lso include social, emotional, and psychological effects [38,39]....

    [...]

  • ...Pathological gait has also been linked to numerous secondary conditions, ncluding increased energy expenditure [37], increased risk and fear of falling [38,39], and deg en rative bone and joint disorders (e....

    [...]

Journal ArticleDOI
TL;DR: The sensitivity of the projections to increasing or decreasing incidence was investigated, and alternative sets of estimates of limb loss related to dysvascular conditions based on assumptions of a 10% or 25% increase or decrease in incidence of amputations for these conditions were developed.

2,274 citations


"Control strategies for active lower..." refers background in this paper

  • ...stroke [6], spinal cord injury [7], Parkinson’s disease [8], and lower limb amputations [9]) can likewise be expected....

    [...]

Journal ArticleDOI
17 May 2012-Nature
TL;DR: The results demonstrate the feasibility for people with tetraplegia, years after injury to the central nervous system, to recreate useful multidimensional control of complex devices directly from a small sample of neural signals.
Abstract: Two people with long-standing tetraplegia use neural interface system-based control of a robotic arm to perform three-dimensional reach and grasp movements. John Donoghue and colleagues have previously demonstrated that people with tetraplegia can learn to use neural signals from the motor cortex to control a computer cursor. Work from another lab has also shown that monkeys can learn to use such signals to feed themselves with a robotic arm. Now, Donoghue and colleagues have advanced the technology to a level at which two people with long-standing paralysis — a 58-year-old woman and a 66-year-old man — are able to use a neural interface to direct a robotic arm to reach for and grasp objects. One subject was able to learn to pick up and drink from a bottle using a device implanted 5 years earlier, demonstrating not only that subjects can use the brain–machine interface, but also that it has potential longevity. Paralysis following spinal cord injury, brainstem stroke, amyotrophic lateral sclerosis and other disorders can disconnect the brain from the body, eliminating the ability to perform volitional movements. A neural interface system1,2,3,4,5 could restore mobility and independence for people with paralysis by translating neuronal activity directly into control signals for assistive devices. We have previously shown that people with long-standing tetraplegia can use a neural interface system to move and click a computer cursor and to control physical devices6,7,8. Able-bodied monkeys have used a neural interface system to control a robotic arm9, but it is unknown whether people with profound upper extremity paralysis or limb loss could use cortical neuronal ensemble signals to direct useful arm actions. Here we demonstrate the ability of two people with long-standing tetraplegia to use neural interface system-based control of a robotic arm to perform three-dimensional reach and grasp movements. Participants controlled the arm and hand over a broad space without explicit training, using signals decoded from a small, local population of motor cortex (MI) neurons recorded from a 96-channel microelectrode array. One of the study participants, implanted with the sensor 5 years earlier, also used a robotic arm to drink coffee from a bottle. Although robotic reach and grasp actions were not as fast or accurate as those of an able-bodied person, our results demonstrate the feasibility for people with tetraplegia, years after injury to the central nervous system, to recreate useful multidimensional control of complex devices directly from a small sample of neural signals.

2,181 citations


"Control strategies for active lower..." refers background in this paper

  • ...Intracortical electrode arrays have been successfully demonstrated to allow control of multi-degree-of-freedom reach and grasp movements with robotic arms in tetraplegic subjects [55,56],...

    [...]

Journal ArticleDOI
TL;DR: The data suggest that the incidence of Parkinson's disease varies by race/ethnicity, and the age- and gender-adjusted rate per 100,000 was highest among Hispanics.
Abstract: The goal of this study was to estimate the incidence of Parkinson's disease by age, gender, and ethnicity. Newly diagnosed Parkinson's disease cases in 1994-1995 were identified among members of the Kaiser Permanente Medical Care Program of Northern California, a large health maintenance organization. Each case met modified standardized criteria/Hughes diagnostic criteria as applied by a movement disorder specialist. Incidence rates per 100,000 person-years were calculated using the Kaiser Permanente membership information as the denominator and adjusted for age and/or gender using the direct method of standardization. A total of 588 newly diagnosed (incident) cases of Parkinson's disease were identified, which gave an overall annualized age- and gender-adjusted incidence rate of 13.4 per 100,000 (95% confidence interval (CI): 11.4, 15.5). The incidence rapidly increased over the age of 60 years, with only 4% of the cases being under the age of 50 years. The rate for men (19.0 per 100,000, 95% CI: 16.1, 21.8) was 91% higher than that for women (9.9 per 100,000, 95% CI: 7.6, 12.2). The age- and gender-adjusted rate per 100,000 was highest among Hispanics (16.6, 95% CI: 12.0, 21.3), followed by non-Hispanic Whites (13.6, 95% CI: 11.5, 15.7), Asians (11.3, 95% CI: 7.2, 15.3), and Blacks (10.2, 95% CI: 6.4, 14.0). These data suggest that the incidence of Parkinson's disease varies by race/ethnicity.

1,537 citations


"Control strategies for active lower..." refers background in this paper

  • ...stroke [6], spinal cord injury [7], Parkinson’s disease [8], and lower limb amputations [9]) can lik ew se be expected....

    [...]