scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Control Strategy of Three-Phase Battery Energy Storage Systems for Frequency Support in Microgrids and with Uninterrupted Supply of Local Loads

01 Sep 2014-IEEE Transactions on Power Electronics (IEEE)-Vol. 29, Iss: 9, pp 5010-5020
TL;DR: In this paper, an enhanced control method for battery energy storage systems (BESS) is presented to support the frequency of MG and with the ability of disconnecting from the MG to supplying in the island mode a local consumer.
Abstract: Frequency control in autonomous microgrids (MG) with high penetration of renewable energy sources represents a great concern to ensure the system stability. In this regard, this paper presents an enhanced control method for battery energy storage systems (BESS) to support the frequency of MG and with the ability of disconnecting from the MG to supplying in the island mode a local consumer. A frequency controller, combining a conventional droop control with an inertia emulation function, governs the BESS active power transfer during the primary frequency control level. The BESS may also provide voltage support in the point of common coupling with the MG. Moreover, the proposed BESS may compensate, partially or totally, the power absorbed by the local loads in order to improve the MG frequency response. When the MG power quality worsens below a certain level, in terms of voltage and frequency, the BESS detaches from the MG and continues to operate islanded. The reconnection is accomplished following a smoothly resynchronization of the local voltage with the MG, without disturbing the local loads supply. Additionally, this paper also discusses about the aspects related to the BESS management and its integration within the proposed system. The simulation and experimental results assess the feasibility of the proposed control solutions.
Citations
More filters
Journal ArticleDOI
TL;DR: A phase-locked loop (PLL) is a nonlinear negative feedback control system that synchronizes its output in frequency as well as in phase with its input PLLs are now widely used for the synchronization of power-electronics-based converters and also for monitoring and control purposes in different engineering fields as mentioned in this paper.
Abstract: A phase-locked loop (PLL) is a nonlinear negative-feedback control system that synchronizes its output in frequency as well as in phase with its input PLLs are now widely used for the synchronization of power-electronics-based converters and also for monitoring and control purposes in different engineering fields In recent years, there have been many attempts to design more advanced PLLs for three-phase applications The aim of this paper is to provide overviews of these attempts, which can be very useful for engineers and academic researchers

563 citations


Cites methods from "Control Strategy of Three-Phase Bat..."

  • ...An alternative approach for the amplitude normalization is using the inverse tangent operation [15], [81], [82], which reduces the nonlinearity of the PLL control loop at the cost of a higher computational effort....

    [...]

Journal ArticleDOI
TL;DR: In this paper, an energy storage system (ESS) might be a viable solution for providing inertial response and primary frequency regulation in the power system with a high penetration of wind power.
Abstract: Large-scale integration of renewable energy sources in power system leads to the replacement of conventional power plants (CPPs) and consequently challenges in power system reliability and security are introduced. This study is focused on improving the grid frequency response after a contingency event in the power system with a high penetration of wind power. An energy storage system (ESS) might be a viable solution for providing inertial response and primary frequency regulation. A methodology has been presented here for the sizing of the ESS in terms of required power and energy. It describes the contribution of the ESS to the grid, in terms of inertial constant and droop. The methodology is applied to a 12-bus grid model with high wind power penetration. The estimated ESS size for inertial response and primary frequency regulation services are validated through real-time simulations. Moreover, it is demonstrated that the ESS can provide the response similar to that provided by the CPPs.

271 citations


Cites methods from "Control Strategy of Three-Phase Bat..."

  • ...A control strategy for an ESS providing IR and PFR in micro-grids was proposed in [21]; however, sizing the ESS was out of the scope of that...

    [...]

Journal ArticleDOI
TL;DR: The application status of the energy storage system in the renewable energy power generation is concluded and the critical problems that need to be addressed during the construction and operation of the storage system are indicated.
Abstract: To maximize the introduction of renewable energy, introducing grid energy storage systems are essential. Electrochemical energy storage system, i.e., battery system, exhibits high potential for grid energy storage application. A battery energy storage system is comprised of a battery module and a power conversion module. This paper starts by reviewing several potential battery systems, as well as an advanced aluminum-ion battery that currently has promising prospects in the electrochemical energy storage system. The characteristics of the batteries are reviewed and compared, including the materials, electrochemistry, performance and costs. The application prospect of the batteries is discussed. The paper summarizes the features of current and future grid energy storage battery, lists the advantages and disadvantages of different types of batteries, and points out that the performance and capacity of large-scale battery energy storage system depend on battery and power condition system (PCS). The power conversion system determines the operational condition of the entire energy storage system. The new generation wide bandgap semiconductor for power electronic technology is discussed from the perspective of performance, topology, model and non-linearity and is compared to the traditional silicon-based semiconductor. Finally, the application prospect of the new generation semiconductor technology in the energy storage system is indicated. This paper concludes the application status of the energy storage system in the renewable energy power generation and indicates the critical problems that need to be addressed during the construction and operation of the storage system.

269 citations

Journal ArticleDOI
TL;DR: In this paper, the effect on the lifetime of the battery energy storage system of various strategies for reestablishing the batteries' state of charge after the primary frequency regulation is successfully delivered.
Abstract: Because of their characteristics, which have been continuously improved during the last years, Lithium-ion batteries have been proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though there are worldwide demonstration projects, where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present, there are no very clear requirements on how the Lithium-ion battery energy storage systems should be operated, while providing frequency regulation service and how the system has to reestablish its state of charge (SOC) once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for reestablishing the batteries’ SOC after the primary frequency regulation is successfully delivered.

244 citations


Cites background from "Control Strategy of Three-Phase Bat..."

  • ...…of fastresponding CGUs, several other solutions have been proposed: large-scale aggregation of wind power plants [5], improvement of the wind forecast methods (short- and long-term) [6], improvement of the demand-side management techniques [7], and the use of energy storage systems (ESS) as…...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the importance of low voltage ride-through (LVRT) for single-phase PV power systems under grid faults is considered, along with three reactive power injection strategies.
Abstract: Current grid standards largely require that low-power (e.g., several kilowatts) single-phase photovoltaic (PV) systems operate at unity power factor (PF) with maximum power point tracking (MPPT), and disconnect from the grid under grid faults by means of islanding detection. However, in the case of wide-scale penetration of single-phase PV systems in the distributed grid, disconnection under grid faults can contribute to 1) voltage flickers, 2) power outages, and 3) system instability. This article explores grid code modifications for a wide-scale adoption of PV systems in the distribution grid. In addition, based on the fact that Italy and Japan have recently undertaken a major review of standards for PV power conversion systems connected to low-voltage networks, the importance of low voltage ride-through (LVRT) for single-phase PV power systems under grid faults is considered, along with three reactive power injection strategies. Simulations are presented for a PV power system with a LVRT capability and ancillary services. An example of a full-bridge single-phase grid connected system is tested experimentally to demonstrate the potential benefits. Additionally, grid codes for advanced PV systems with the discussed features are summarized.

221 citations

References
More filters
Journal ArticleDOI
TL;DR: An overview of the structures for the DPGS based on fuel cell, photovoltaic, and wind turbines is given and the possibility of compensation for low-order harmonics is discussed.
Abstract: Renewable energy sources like wind, sun, and hydro are seen as a reliable alternative to the traditional energy sources such as oil, natural gas, or coal. Distributed power generation systems (DPGSs) based on renewable energy sources experience a large development worldwide, with Germany, Denmark, Japan, and USA as leaders in the development in this field. Due to the increasing number of DPGSs connected to the utility network, new and stricter standards in respect to power quality, safe running, and islanding protection are issued. As a consequence, the control of distributed generation systems should be improved to meet the requirements for grid interconnection. This paper gives an overview of the structures for the DPGS based on fuel cell, photovoltaic, and wind turbines. In addition, control structures of the grid-side converter are presented, and the possibility of compensation for low-order harmonics is also discussed. Moreover, control strategies when running on grid faults are treated. This paper ends up with an overview of synchronization methods and a discussion about their importance in the control

4,655 citations


"Control Strategy of Three-Phase Bat..." refers background in this paper

  • ...reported in the literature, as [6], [20], and [21], for three-phase VSC and starting from the comprehensive overview accomplished in [22], this paper adopts a proportional-integrative (PI)...

    [...]

Journal ArticleDOI
01 Nov 2009
TL;DR: The hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to MGs is presented and results are provided to show the feasibility of the proposed approach.
Abstract: DC and AC Microgrids are key elements to integrate renewable and distributed energy resources as well as distributed energy storage systems. In the last years, efforts toward the standardization of these Microgrids have been made. In this sense, this paper present the hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to microgrids. The hierarchical control proposed consist of three levels: i) the primary control is based on the droop method, including an output impedance virtual loop; ii) the secondary control allows restoring the deviations produced by the primary control; and iii) the tertiary control manage the power flow between the microgrid and the external electrical distribution system. Results from a hierarchical-controlled microgrid are provided to show the feasibility of the proposed approach.

4,145 citations


"Control Strategy of Three-Phase Bat..." refers background in this paper

  • ...As reported in [25], the frequency control procedure for MG having multiple frequency-controlling units tends toward the three-level organization adopted in the classical grids, namely primary– secondary–tertiary as defined in [26]....

    [...]

  • ...Because the voltage control, similarly with frequency control, can be structured on three levels [25], the problem can be transformed into an optimization process coordinated by the MGCC, which can send correction signals to each unit to minimize the useless reactive power flows....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a detailed analysis of the main operation modes and control structures for power converters belonging to micro-grids is carried out, focusing mainly on grid-forming, grid-feeding, and grid-supporting configurations.
Abstract: The enabling of ac microgrids in distribution networks allows delivering distributed power and providing grid support services during regular operation of the grid, as well as powering isolated islands in case of faults and contingencies, thus increasing the performance and reliability of the electrical system. The high penetration of distributed generators, linked to the grid through highly controllable power processors based on power electronics, together with the incorporation of electrical energy storage systems, communication technologies, and controllable loads, opens new horizons to the effective expansion of microgrid applications integrated into electrical power systems. This paper carries out an overview about microgrid structures and control techniques at different hierarchical levels. At the power converter level, a detailed analysis of the main operation modes and control structures for power converters belonging to microgrids is carried out, focusing mainly on grid-forming, grid-feeding, and grid-supporting configurations. This analysis is extended as well toward the hierarchical control scheme of microgrids, which, based on the primary, secondary, and tertiary control layer division, is devoted to minimize the operation cost, coordinating support services, meanwhile maximizing the reliability and the controllability of microgrids. Finally, the main grid services that microgrids can offer to the main network, as well as the future trends in the development of their operation and control for the next future, are presented and discussed.

2,621 citations


"Control Strategy of Three-Phase Bat..." refers background in this paper

  • ...The power converter control represents a highly debated subject and the review from [6] includes the main solutions to control an inverter connected to an MG....

    [...]

  • ...reported in the literature, as [6], [20], and [21], for three-phase VSC and starting from the comprehensive overview accomplished in [22], this paper adopts a proportional-integrative (PI)...

    [...]

Journal ArticleDOI
01 Jan 2011
TL;DR: A conceptual framework to successfully integrate electric vehicles into electric power systems and several simulations are presented in order to illustrate the potential impacts/benefits arising from the electric vehicles grid integration under the referred framework.
Abstract: This paper presents a conceptual framework to successfully integrate electric vehicles into electric power systems. The proposed framework covers two different domains: the grid technical operation and the electricity markets environment. All the players involved in both these processes, as well as their activities, are described in detail. Additionally, several simulations are presented in order to illustrate the potential impacts/benefits arising from the electric vehicles grid integration under the referred framework, comprising steady-state and dynamic behavior analysis.

1,267 citations


"Control Strategy of Three-Phase Bat..." refers background in this paper

  • ...Due to the rapid development of the vehicle to grid/MG concept [5], the energy storage resource may also come in the near future from the electric vehicles....

    [...]

Journal ArticleDOI
TL;DR: In this article, a method is proposed to let variable-speed wind turbines emulate inertia and support primary frequency control, where the required power is obtained from the kinetic energy stored in the rotating mass of the turbine blades.
Abstract: The increasing penetration of variable-speed wind turbines in the electricity grid will result in a reduction of the number of connected conventional power plants. This will require changes in the way the grid frequency is controlled. In this letter, a method is proposed to let variable-speed wind turbines emulate inertia and support primary frequency control. The required power is obtained from the kinetic energy stored in the rotating mass of the turbine blades.

1,106 citations


"Control Strategy of Three-Phase Bat..." refers background in this paper

  • ...oscillations damping, as reported in [27] and [28]....

    [...]