scispace - formally typeset
Journal ArticleDOI

Controlled Synthesis of Polymer Brushes by “Living” Free Radical Polymerization Techniques

Reads0
Chats0
TLDR
In this article, a wide variety of unique polymer brush structures can be accomplished by "living" free radical polymerization of vinyl monomers from surface-tethered alkoxyamines or from tethered α-halo esters in the presence of (PPh3)2NiBr2.
Abstract
The preparation of a wide variety of unique polymer brush structures can be accomplished by “living” free radical polymerization of vinyl monomers from surface-tethered alkoxyamines or from tethered α-halo esters in the presence of (PPh3)2NiBr2. The use of a “living” free radical process permits the molecular weight and polydispersity of the covalently attached polymer chains to be accurately controlled while also allowing the formation of block copolymers by the sequential growth of monomers from the surface. These block and random copolymer brushes have been used to control surface properties.

read more

Citations
More filters
Journal ArticleDOI

Nanoparticle Polymer Composites: Where Two Small Worlds Meet

TL;DR: A challenge for future studies is to create hierarchically structured composites in which each sublayer contributes a distinct function to yield a mechanically integrated, multifunctional material.
Journal ArticleDOI

Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications

TL;DR: This data indicates that self-Assembled Monolayers and Walled Carbon Nanotubes with high adhesion to Nitroxide-Mediated Polymerization have potential in the well-Defined Polymer Age.
References
More filters
Journal ArticleDOI

Controlled Living Radical Polymerization - Halogen Atom-Transfer Radical Polymerization Promoted by a Cu(I)Cu(II) Redox Process

TL;DR: An extension of ATRA to atom transfer radical addition, ATRP, provided a new and efficient way to conduct controlled/living radical polymerization as mentioned in this paper, using a simple alkyl halide, R-X (X = Cl and Br), as an initiator and a transition metal species complexed by suitable ligand(s), M t n /L x, e.g., CuX/2,2'-bipyridine, as a catalyst.
Book ChapterDOI

Tethered chains in polymer microstructures

TL;DR: This review brings out the common features of seemingly widely disparate microstructures containing tethered chains, which can be reversible or irreversible and is frequently sufficiently dense that the chains are crowded.
Journal ArticleDOI

Synthesis of Poly(styrene) Monolayers Attached to High Surface Area Silica Gels through Self-Assembled Monolayers of Azo Initiators

TL;DR: In this article, the radical-chain polymerization of styrene using self-assembled monolayers of azo initiators covalently bound to high surface area silica gels is described.
Journal ArticleDOI

Controlled Radical Polymerization of Methacrylic Monomers in the Presence of a Bis(ortho-chelated) Arylnickel(II) Complex and Different Activated Alkyl Halides

TL;DR: In this article, a novel class of homogeneous nickel(II) catalysts, denoted as Ni(NCN)Br, is reported to mediate in the presence of activated alkyl halides, e.g., CCl4 or α-halocarbonyl compounds, and remarkably enough, poly(methyl methacrylate) (PMMA) with molecular weight up to at least 105 g/mol was synthesized in a controlled fashion.
Journal ArticleDOI

Initiating Systems for Nitroxide-Mediated ``Living'' Free Radical Polymerizations: Synthesis and Evaluation

TL;DR: In this article, a variety of initiating systems for the preparation of macromolecules by nitroxide-mediated "living" free radical procedures have been prepared and evaluated, which can be divided into two classes, unimolecular initiators in which alkylated TEMPO derivatives dissociate to provide both the initiating radical and the stable radical, and bimolecular systems in which a traditional free radical initiator, such as BPO or AIBN, is used in conjunction with tEMPO.
Related Papers (5)