Abstract: Density-functional theory (DFT) is a widespread method for simulating the quantum-chemical behaviour of electrons in matter. It provides a first-principles description of many optical, mechanical and chemical properties at an acceptable computational cost [16, 2, 3]. For a wide range of systems the obtained predictions are accurate and shortcomings of the theory are by now wellunderstood [2, 3]. The desire to tackle even bigger systems and more involved materials, however, keeps posing novel challenges that require methods to constantly improve. One example are socalled high-throughput screening approaches, which are becoming prominent in recent years. In these techniques one wishes to systematically scan over huge design spaces of compounds in order to identify promising novel materials for targeted follow-up investigation. This has already lead to many success stories [14], such as the discovery of novel earth-abundant semiconductors [11], novel light-absorbing materials [20], electrocatalysts [8], materials for hydrogen storage [13] or for Li-ion batteries [1]. Keeping in mind the large range of physics that needs to be covered in these studies as well as the typical number of calculations (up to the order of millions), a bottleneck in these studies is the reliability and performance of the underlying DFT codes.
... read more