scispace - formally typeset
Search or ask a question
Proceedings Article

Convergence Analysis of Two-layer Neural Networks with ReLU Activation

01 May 2017-Vol. 30, pp 597-607
TL;DR: In this article, the authors provide a convergence analysis for SGD on a rich subset of two-layer feedforward networks with ReLU activations, characterized by a special structure called "identity mapping".
Abstract: In recent years, stochastic gradient descent (SGD) based techniques has become the standard tools for training neural networks. However, formal theoretical understanding of why SGD can train neural networks in practice is largely missing. In this paper, we make progress on understanding this mystery by providing a convergence analysis for SGD on a rich subset of two-layer feedforward networks with ReLU activations. This subset is characterized by a special structure called "identity mapping". We prove that, if input follows from Gaussian distribution, with standard $O(1/\sqrt{d})$ initialization of the weights, SGD converges to the global minimum in polynomial number of steps. Unlike normal vanilla networks, the "identity mapping" makes our network asymmetric and thus the global minimum is unique. To complement our theory, we are also able to show experimentally that multi-layer networks with this mapping have better performance compared with normal vanilla networks. Our convergence theorem differs from traditional non-convex optimization techniques. We show that SGD converges to optimal in "two phases": In phase I, the gradient points to the wrong direction, however, a potential function $g$ gradually decreases. Then in phase II, SGD enters a nice one point convex region and converges. We also show that the identity mapping is necessary for convergence, as it moves the initial point to a better place for optimization. Experiment verifies our claims.

Content maybe subject to copyright    Report

Citations
More filters
Posted Content
TL;DR: This work proves why stochastic gradient descent can find global minima on the training objective of DNNs in $\textit{polynomial time}$ and implies an equivalence between over-parameterized neural networks and neural tangent kernel (NTK) in the finite (and polynomial) width setting.
Abstract: Deep neural networks (DNNs) have demonstrated dominating performance in many fields; since AlexNet, networks used in practice are going wider and deeper. On the theoretical side, a long line of works has been focusing on training neural networks with one hidden layer. The theory of multi-layer networks remains largely unsettled. In this work, we prove why stochastic gradient descent (SGD) can find $\textit{global minima}$ on the training objective of DNNs in $\textit{polynomial time}$. We only make two assumptions: the inputs are non-degenerate and the network is over-parameterized. The latter means the network width is sufficiently large: $\textit{polynomial}$ in $L$, the number of layers and in $n$, the number of samples. Our key technique is to derive that, in a sufficiently large neighborhood of the random initialization, the optimization landscape is almost-convex and semi-smooth even with ReLU activations. This implies an equivalence between over-parameterized neural networks and neural tangent kernel (NTK) in the finite (and polynomial) width setting. As concrete examples, starting from randomly initialized weights, we prove that SGD can attain 100% training accuracy in classification tasks, or minimize regression loss in linear convergence speed, with running time polynomial in $n,L$. Our theory applies to the widely-used but non-smooth ReLU activation, and to any smooth and possibly non-convex loss functions. In terms of network architectures, our theory at least applies to fully-connected neural networks, convolutional neural networks (CNN), and residual neural networks (ResNet).

832 citations

Posted Content
TL;DR: In this article, the problem of learning a two-layer overparameterized ReLU neural network for multi-class classification via stochastic gradient descent (SGD) from random initialization is studied.
Abstract: Neural networks have many successful applications, while much less theoretical understanding has been gained. Towards bridging this gap, we study the problem of learning a two-layer overparameterized ReLU neural network for multi-class classification via stochastic gradient descent (SGD) from random initialization. In the overparameterized setting, when the data comes from mixtures of well-separated distributions, we prove that SGD learns a network with a small generalization error, albeit the network has enough capacity to fit arbitrary labels. Furthermore, the analysis provides interesting insights into several aspects of learning neural networks and can be verified based on empirical studies on synthetic data and on the MNIST dataset.

409 citations

Journal ArticleDOI
TL;DR: This tutorial-style overview highlights the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees and reviews two contrasting approaches: two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and global landscape analysis and initialization-free algorithms.
Abstract: Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. The theoretical footings, however, had been largely lacking until recently. In this tutorial-style overview, we highlight the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees. We review two contrasting approaches: (1) two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and (2) global landscape analysis and initialization-free algorithms. Several canonical matrix factorization problems are discussed, including but not limited to matrix sensing, phase retrieval, matrix completion, blind deconvolution, and robust principal component analysis. Special care is taken to illustrate the key technical insights underlying their analyses. This article serves as a testament that the integrated consideration of optimization and statistics leads to fruitful research findings.

369 citations

Posted Content
TL;DR: It is proved that self-distillation can also be viewed as implicitly combining ensemble and knowledge distillation to improve test accuracy, and it sheds light on how ensemble works in deep learning in a way that is completely different from traditional theorems.
Abstract: We formally study how ensemble of deep learning models can improve test accuracy, and how the superior performance of ensemble can be distilled into a single model using knowledge distillation. We consider the challenging case where the ensemble is simply an average of the outputs of a few independently trained neural networks with the SAME architecture, trained using the SAME algorithm on the SAME data set, and they only differ by the random seeds used in the initialization. We empirically show that ensemble/knowledge distillation in deep learning works very differently from traditional learning theory, especially differently from ensemble of random feature mappings or the neural-tangent-kernel feature mappings, and is potentially out of the scope of existing theorems. Thus, to properly understand ensemble and knowledge distillation in deep learning, we develop a theory showing that when data has a structure we refer to as "multi-view", then ensemble of independently trained neural networks can provably improve test accuracy, and such superior test accuracy can also be provably distilled into a single model by training a single model to match the output of the ensemble instead of the true label. Our result sheds light on how ensemble works in deep learning in a way that is completely different from traditional theorems, and how the "dark knowledge" is hidden in the outputs of the ensemble -- that can be used in knowledge distillation -- comparing to the true data labels. In the end, we prove that self-distillation can also be viewed as implicitly combining ensemble and knowledge distillation to improve test accuracy.

177 citations

Posted Content
TL;DR: In this paper, the authors consider the problem of learning a two-linear-layer network with binarized ReLU activation and Gaussian input data and show that a poor choice of STE leads to instability of the training algorithm near certain local minima.
Abstract: Training activation quantized neural networks involves minimizing a piecewise constant function whose gradient vanishes almost everywhere, which is undesirable for the standard back-propagation or chain rule. An empirical way around this issue is to use a straight-through estimator (STE) (Bengio et al., 2013) in the backward pass only, so that the "gradient" through the modified chain rule becomes non-trivial. Since this unusual "gradient" is certainly not the gradient of loss function, the following question arises: why searching in its negative direction minimizes the training loss? In this paper, we provide the theoretical justification of the concept of STE by answering this question. We consider the problem of learning a two-linear-layer network with binarized ReLU activation and Gaussian input data. We shall refer to the unusual "gradient" given by the STE-modifed chain rule as coarse gradient. The choice of STE is not unique. We prove that if the STE is properly chosen, the expected coarse gradient correlates positively with the population gradient (not available for the training), and its negation is a descent direction for minimizing the population loss. We further show the associated coarse gradient descent algorithm converges to a critical point of the population loss minimization problem. Moreover, we show that a poor choice of STE leads to instability of the training algorithm near certain local minima, which is verified with CIFAR-10 experiments.

167 citations