scispace - formally typeset
Open AccessJournal ArticleDOI

Convergence in Variance of Chebyshev Accelerated Gibbs Samplers

Colin Fox, +1 more
- 04 Feb 2014 - 
- Vol. 36, Iss: 1
Reads0
Chats0
TLDR
An algorithm for the stochastic version of the second-order Chebyshev accelerated SSOR (symmetric successive overrelaxation) iteration is given and numerical examples of sampling from multivariate Gaussian distributions are provided to confirm that the desired convergence properties are achieved in finite precision.
Abstract
A stochastic version of a stationary linear iterative solver may be designed to converge in distribution to a probability distribution with a specified mean μ and covariance matrix A−1. A common example is Gibbs sampling applied to a multivariate Gaussian distribution which is a stochastic version of the Gauss-Seidel linear solver. The iteration operator that acts on the error in mean and covariance in the stochastic iteration is the same iteration operator that acts on the solution error in the linear solver, and thus both the stationary sampler and the stationary solver have the same error polynomial and geometric convergence rate. The polynomial acceleration techniques that are well known in numerical analysis for accelerating the linear solver may also be used to accelerate the stochastic iteration. We derive first-order and second-order Chebyshev polynomial acceleration for the stochastic iteration to accelerate convergence in the mean and covariance by mimicking the derivation for the linear solver. In particular, we show that the error polynomials are identical and hence so are the convergence rates. Thus, optimality of the Chebyshev accelerated solver implies optimality of the Chebyshev accelerated sampler. We give an algorithm for the stochastic version of the second-order Chebyshev accelerated SSOR (symmetric successive overrelaxation) iteration and provide numerical examples of sampling from multivariate Gaussian distributions to confirm that the desired convergence properties are achieved in finite precision.

read more

Content maybe subject to copyright    Report

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
SIAM J. SCI. COMPUT.
c
2014 Society for Industrial and Applied Mathematics
Vol. 36, No. 1, pp. A124–A147
CONVERGENCE IN VARIANCE OF CHEBYSHEV ACCELERATED
GIBBS SAMPLERS
COLIN FOX
AND ALBERT PARKER
Abstract. A stoc hastic version of a stationary linear iterativ e solver may be designed to converge
in distribution to a probability distribution with a specified mean μ and covariance matrix A
1
.
A common example is Gibbs sampling applied to a multivariate Gaussian distribution which is a
stochastic version of the Gauss–Seidel linear solver. The iteration operator that acts on the error in
mean and covariance in the stochastic iteration is the same iteration operator that acts on the solution
error in the linear solver, and thus both the stationary sampler and the stationary solv er have the
same error polynomial and geometric convergence rate. The polynomial acceleration techniques that
are well known in numerical analysis for accelerating the linear solver may also be used to accelerate
the stochastic iteration. We derive first-order and second-order Chebyshev polynomial acceleration
for the stochastic iteration to accelerate convergence in the mean and covariance by mimicking the
derivation for the linear solver. In particular, we show that the error polynomials are identical and
hence so are the con vergence rates. Thus, optimality of the Chebyshev accelerated solver implies
optimality of the Chebyshev accelerated sampler. We give an algorithm for the stochastic version of
the second-order Cheb yshev accelerated SSOR (symmetric successive overrelaxation) iteration and
provide numerical examples of sampling from multivariate Gaussian distributions to confirm that
the desired convergence properties are achieved in finite precision.
Key words. Chebyshev polynomial acceleration, Gauss–Seidel, Gibbs sampling, geometric
convergence, linear solver, stochastic iteration, SSOR
AMS subject classifications. 65F10, 65B99, 62E17, 60G15, 60G60
DOI. 10.1137/120900940
1. Introduction. Iterations of the form
(1.1) x
l+1
= Gx
l
+ g, l =1, 2,...,
where G is a fixed iteration operator and g is a fixed vector, are commonplace in
numerical computation. For example, they occur in the stationary linear iterative
methods used to solve systems of linear equations [1, 10, 17, 23]. We often refer to the
associated algorithm as a solver. We consider these iterations, and also the related
stochastic iteration
(1.2) y
l+1
= Gy
l
+ g
l
,l=1, 2,...,
where now g
l
is a “noise” vector given by an independent draw from some fixed
probability distribution with finite variance. Just as the deterministic iteration (1.1)
can be designed to converge to the solution of a linear system that is too large or
complex to solve directly, the stochastic iteration (1.2) may be designed to converge
in distribution to a target distribution that is too high dimensional, or complex, to
sample from directly. Since the stochastic iteration may be used to generate samples
Submitted to the journal’s Methods and Algorithms for Scientific Computing section Decem-
ber 3, 2012; accepted for publication (in revised form) November 14, 2013; published electronically
February 4, 2014. This work was supported by the New Zealand Institute for Mathematics and its
Applications thematic programme on PDEs and Marsden contract UOO1015.
http://www.siam.org/journals/sisc/36-1/90094.html
Department of Physics, University of Otago, Dunedin, New Zealand (fox@physics.otago.ac.nz).
Cent er for Biofilm Engineering and Department of Mathematical Sciences, Montana State Uni-
versit y, Bozeman, MT 59715 (parker@math.montana.edu).
A124
Downloaded 03/07/14 to 153.90.118.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
CHEBYSHEV SAMPLING A125
from a desired target distribution, we often refer to the associated algorithm as a
sampler. An example is the conventional Gibbs sampling algorithm [21] applied to
sampling from a high-dimensional Gaussian distribution. In that case the iteration
operator G is identical to the iteration operator in the Gauss–Seidel iterative method
[5, 7].
Novel Gibbs samplers may be designed by considering matrix splittings other than
the Gauss–Seidel splitting [5]. Matrix splittings are considered further in section 2.
Interestingly, the deterministic and stochastic iterations converge under exactly the
same conditions, with a necessary and sufficient condition being that the spectral
radius of G be strictly less than 1, that is, ρ (G) < 1 [4, 26]. Convergence in both cases
is geometric, with the asymptotic average reduction factor given by ρ (G) (though this
is called the “convergence rate” in the statistics literature [19]).
A standard method of reducing the asymptotic average reduction factor is by
polynomial acceleration, particularly using Chebyshev polynomials [1, 6, 10, 23]. The
original formulation used a modified first-order iteration, as above, though the result-
ing algorithm is impractical due to numerical difficulties [1]. Practical implementa-
tions use a nonstationary second-order iteration that can give optimal reduction of
error at each iteration.
In this paper, we develop polynomial acceleration for the stochastic iteration.
In particular, we develop nonstationary first- and second-order iterations that give
optimal convergence in mean and variance to a desired target distribution. Since
convergence in mean is achieved by using exactly the linear iteration for solving a linear
system, polynomial acceleration of the mean is exactly as in the existing treatments.
Hence we focus on optimal convergence in variance that requires modification to the
noise term. Correspondingly, we focus throughout the development on sampling from
a target distribution that has zero mean and some finite covariance matrix, and hence
the noise distribution always has zero mean. Extension to target distributions with
nonzero mean is achieved simply by adding the deterministic iteration or, equivalently,
adding a fixed vector to the noise term.
We develop the sampling algorithms and demonstrate the equivalence to linear
solvers by investigating a sequence of linear iterative solvers, essentially following the
historical development in sophistication and speed, and show that exactly the same
ideas used to establish properties of the solver can be used to establish the equivalent
properties for a sampler. In particular, convergence of the solver implies convergence
of the sampler, and the convergence factors are identical, because they are given by
the same expression.
We follow the development and derivations of convergence, given in Axelsson [1],
for stationary and nonstationary (Chebyshev) first-order and second-order methods,
set out in sect. 5.2 (Stationary Iterative Methods) and sect. 5.3 (The Chebyshev It-
erative Method). We could have equally followed the excellent presentations of the
same methods in Golub and Van Loan [10] or Saad [23]. Our own work and compu-
tational implementation actually take a route that switches between the formalism
used in these three texts. By following here the route of a single exposition, we hope
to show how establishing convergence of the stochastic versions can be made very
straightforward.
The most straightforward application of the methods we develop is to sample from
a high-dimensional Gaussian distribution, defined by the mean vector μ and covariance
matrix A
1
. We present an example which shows the convergence of the Chebyshev
sampler in finite precision applied to a Gaussian Markov random field (GMRF) with
a known sparse precision matrix corresponding to a Mat´ern-class covariance function
Downloaded 03/07/14 to 153.90.118.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
A126 COLIN FOX AND ALBERT PARKER
[12, 15]. This example allows efficient numerical calculation since operation by A has
reduced numerical cost.
Although we focus on the Gaussian in our numerical example, the accelerated
algorithms we give are more generally applicable to any distribution where the focus
is on the mean as a “best” estimate and the covariance as a measure of uncertainties,
with higher moments not of primary concern. This is typical in inferential methods
applied to solving inverse problems or in the growing field of uncertainty quantifica-
tion, where the mean and variance of the distribution over parameters or predicted
quantities are the primary summary statistics of interest.
1.1. Some links between sampling from distributions and solving sys-
tems of equations. Consider a probability distribution with probability density
function π(x) and the two tasks of drawing x π (x distributed as π)andcom-
puting x =argmaxπ (or solving −∇ log π = 0). We use the notation x
i
=
(x
1
,x
2
,...,x
i1
,x
i+1
,...,x
n
)todenotealln 1componentsofx other than x
i
,
and π (x
i
|x
i
) to denote the univariate conditional distribution over x
i
conditioned
on the (fixed) value of all other components.
The classical Gibbs sampler or “stochastic relaxation” (also known as Glauber
dynamics and the local heat bath algorithm) for generating a sample from π is an
iterative algorithm in which one sweep consists of updating each component in se-
quence by drawing from the conditional distribution for the component with all other
components fixed at the most recent value, as in Algorithm 1. Repeating this sweep
indefinitely produces distributions over iterates that are guaranteed to converge (ge-
ometrically) to π under mild conditions [11, ref. 84], [19], though distributions with
nonconnected support for which Algorithm 1 fails are easy to find [19].
Algorithm 1: One sweep of the componentwise Gibbs sampler targeting π(x)
for i =1,...,n do
sample z π (x
i
|x
i
);
x
i
= z;
end
It is not hard to see a connection between the Gibbs sampler in Algorithm 1 and
the traditional Gauss–Seidel algorithm for maximizing π which consists of repeatedly
applying the sweep over componentwise solvers with all other components fixed at the
most recent value, as in Algorithm 2: Whereas the Gibbs sampler performs a compo-
nentwise conditional sampling, Gauss–Seidel performs componentwise optimization.
Algorithm 2: One sweep of Gauss–Seidel relaxation for maximizing π(x)
for i =1,...,n do
set z =argmax
x
i
π (x
i
|x
i
);
x
i
= z;
end
In statistical physics, distributions often arise with the form
π(x)=k(β)e
βH(x)
,
Downloaded 03/07/14 to 153.90.118.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
CHEBYSHEV SAMPLING A127
where H(x) is an energy function (the Hamiltonian), β is inversely proportional to
temperature, and k is a normalizing constant. It is often noted that a sampling
algorithm may be used to minimize H(x) in the zero temperature limit, i.e., by taking
the limit β →∞. Then sampling degenerates to optimization since the distribution
is localized at the mode. In particular, Algorithm 1 reduces to Algorithm 2.
In this paper, we exploit an equivalence that operates at finite β to show how the
minimizer (or solver) may be adapted to become a sampling algorithm. For example,
in the simplest case that β =1andH is quadratic, i.e.,
H(x)=
1
2
x
T
Ax b
T
x
for some symmetric positive definite (precision matrix) A, π is Gaussian and the
Gauss–Seidel minimizer of H becomes the Gibbs sampler for π when coordinatewise
minimization is replaced by coordinatewise conditional sampling. One sweep of the
Gibbs sampler may be written in the matrix form (1.2) with
G = M
1
N and g
l
= M
1
c
l
, where c
l
iid
N(0,D).
Here M = L+ D and N = L
T
is a splitting of the (symmetric) precision matrix A in
which L is the strictly lower triangular part of A and D is the diagonal of A [11]. This
is the same splitting used to write the Gauss–Seidel algorithm for solving Ax = b in
matrix form (1.1), with g = M
1
b. What makes this correspondence important is that
the convergence properties of the solver are inherited by the sampler (and vice versa),
which means that acceleration techniques developed for the solver may be applied
to the sampler. The main purpose of this paper is to establish the equivalence of
convergence in mean and covariance in the case of Chebyshev polynomial acceleration,
without the assumption of the target distribution being Gaussian.
2. Matrix splitting and iteration operators. Consider the splitting
(2.1) A = M N,
where A is a symmetric positive definite (SPD) matrix and M is invertible. For
example, for the Gauss–Seidel iteration, M is set to the lower triangular part of
A (including the diagonal). We will often consider the case where the splitting is
symmetric, which means that M is symmetric, and hence so is N. We will utilize the
family of iteration operators
(2.2) G
τ
=
I τM
1
A
parameterized by the relaxation parameter τ = 0. The natural iteration operator
induced by the splitting (2.1) is the case τ = 1, which we denote by G. The nonsta-
tionary iterative methods that we consider use a sequence of iteration operators with
parameters τ
l
, l =0, 1, 2,..., where l denotes iteration number. We will abbreviate
G
τ
l
by G
l
, where possible, to avoid subscripts on subscripts.
The iteration operator G
τ
may also be thought of as being induced by the splitting
A = M
τ
N
τ
,(2.3)
where
M
τ
=
1
τ
M and N
τ
= N +
1 τ
τ
M.
Downloaded 03/07/14 to 153.90.118.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
A128 COLIN FOX AND ALBERT PARKER
In the remainder of this section we list some lemmas about iteration operators
that we will use. Throughout the rest of the paper, proofs to lemmas and some
theorems have been deferred to the appendix.
Lemma 2.1. The itera tion operators G
τ
and G
κ
commute, that is, G
τ
G
κ
= G
κ
G
τ
for all τ, κ.
Lemma 2.2. For a symmetric splitting, G
τ
A
1
is symmetric.
The following lemma determines the variance of noise terms in sampling algo-
rithms.
Lemma 2.3. A
1
G
τ
A
1
G
T
τ
= M
1
τ
M
T
τ
+ N
τ
M
T
τ
.
3. First-order iterative methods. We first consider iterative solvers of the
equation
Ax
= b,
where A is a given SPD matrix, b is a given vector, and the solution we seek is denoted
by x
.
3.1. First-order stationary iterative solver. The first-order stationary iter-
ative solver uses the iteration
x
l+1
= x
l
τM
1
r
l
= G
τ
x
l
+ g
τ
,(3.1)
where r
l
= Ax
l
b for l =1, 2,..., the iteration operator G
τ
is given by (2.2)
and g
τ
= τM
1
b. In the remainder of this section, we derive the fixed point, error
polynomial, and average reduction factor for this iteration.
Lemma 3.1. The iteration in (3.1) has x
as its unique fixed point, i.e.,
(3.2) x
= G
τ
x
+ g
τ
Ax
= b.
Define the error at the lth iteration by
(3.3) e
l
= x
l
x
.
Subtract (3.2) from (3.1) to get the iteration for error
e
l+1
= x
l+1
x
= G
τ
x
l
+ g
τ
G
τ
x
g
τ
= G
τ
x
l
x
= G
τ
e
l
.
By recursion we prove the following theorem.
Theorem 3.2.
e
m
= G
m
τ
e
0
=
I τM
1
A
m
e
0
= P
m
M
1
A
e
0
,
where P
m
is the (simple) mth-order polynomial P
m
(λ)=(1 τλ)
m
.
Note that P
m
(0) = 1 and P
m
(1) = 0. The convergence and convergence rate
of the stationary iterative solver follow from Theorem 3.2.
Axelsson [1, p. 176] gives the optimal relaxation parameter
τ
opt
=
2
λ
1
+ λ
n
,
where λ
1
n
are the extreme (positive) eigenvalues of M
1
A, giving the average
reduction factor
(3.4) ρ
0
=
1 λ
1
n
1+λ
1
n
.
Note that this implies that the iterative solver (3.1) converges for some value of τ.To
be more precise, as long as M
1
A has all positive eigenvalues, then λ
1
n
(0, 1),
which means that ρ
0
(0, 1) and the iteration is guaranteed to converge.
Downloaded 03/07/14 to 153.90.118.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Citations
More filters
Journal ArticleDOI

Optimal low-rank approximations of Bayesian linear inverse problems

TL;DR: In this paper, a low-rank update of the prior covariance matrix is proposed to characterize and approximate the posterior distribution of the parameters in inverse problems, based on the leading eigendirections of the matrix pencil defined by the Hessian of the negative log-likelihood and the prior precision.
Proceedings Article

Analyzing Hogwild Parallel Gaussian Gibbs Sampling

TL;DR: It is shown that if the Gaussian precision matrix is generalized diagonally dominant, then any Hogwild Gibbs sampler, with any update schedule or allocation of variables to processors, yields a stable sampling process with the correct sample mean.
Journal ArticleDOI

Accelerated Gibbs sampling of normal distributions using matrix splittings and polynomials

Colin Fox, +1 more
- 02 Nov 2017 - 
TL;DR: Standard Gibbs sampling applied to a multivariate normal distribution with a specified precision matrix is equivalent in fundamental ways to the Gauss-Seidel iterative solution of linear equations in the precision matrix, giving easy access to mature results in numerical linear algebra.
Posted Content

High-dimensional Gaussian sampling: a review and a unifying approach based on a stochastic proximal point algorithm

TL;DR: This paper proposes a unifying Gaussian simulation framework by deriving a stochastic counterpart of the celebrated proximal point algorithm in optimization and offers a novel and unifying revisit of most of the existing MCMC approaches while extending them.
References
More filters
Journal ArticleDOI

Multigrid Monte Carlo method. Conceptual foundations.

TL;DR: A stochastic generalization of the multigrid method, called multigrids Monte Carlo (MGMC), that reduces critical slowing down in Monte Carlo computations of lattice field theories, applicable to nonlinear {sigma} models, and to lattice gauge theories with or without bosonic matter fields.
Journal ArticleDOI

Bayesian calibration of a large-scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm

TL;DR: A new adaptive delayed‐acceptance MH algorithm (ADAMH) is implemented to adaptively build a stochastic model of the error introduced by the use of a reduced‐order model, which could offer significant improvement in computational efficiency when implementing sample‐based inference in other large‐scale inverse problems.
Book

The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations

TL;DR: The Lanczos algorithm in exact arithmetic and the preconditioned CG algorithm in finite precision were discussed in this article, where the maximum attainable accuracy of the CG algorithm was also discussed.
Journal ArticleDOI

Sampling Gaussian distributions in Krylov spaces with conjugate gradients

TL;DR: This paper introduces a conjugate gradient sampler that is a simple extension of the method of conjugates gradients (CG) for solving linear systems and is efficient for high dimensional problems where forming the covariance or precision matrix is impractical, but operating by the matrix is feasible.

On the Whittle-Matérn correlation family

TL;DR: The Whittle-Matern family as mentioned in this paper is a family of spatial correlations with one parameter determining the smoothness of the paths of the underlying spatial field, and it is related to the Hankel transform.
Related Papers (5)
Frequently Asked Questions (1)
Q1. What are the contributions in "Convergence in variance of chebyshev accelerated" ?

In particular, the authors show that the error polynomials are identical and hence so are the convergence rates. The authors give an algorithm for the stochastic version of the second-order Chebyshev accelerated SSOR ( symmetric successive overrelaxation ) iteration and provide numerical examples of sampling from multivariate Gaussian distributions to confirm that the desired convergence properties are achieved in finite precision.