scispace - formally typeset
Search or ask a question
Book ChapterDOI

Convergence of probability measures

01 Jan 2011-pp 237-243
TL;DR: Weakconvergence methods in metric spaces were studied in this article, with applications sufficient to show their power and utility, and the results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables.
Abstract: The author's preface gives an outline: "This book is about weakconvergence methods in metric spaces, with applications sufficient to show their power and utility. The Introduction motivates the definitions and indicates how the theory will yield solutions to problems arising outside it. Chapter 1 sets out the basic general theorems, which are then specialized in Chapter 2 to the space C[0, l ] of continuous functions on the unit interval and in Chapter 3 to the space D [0, 1 ] of functions with discontinuities of the first kind. The results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables. " The book develops and expands on Donsker's 1951 and 1952 papers on the invariance principle and empirical distributions. The basic random variables remain real-valued although, of course, measures on C[0, l ] and D[0, l ] are vitally used. Within this framework, there are various possibilities for a different and apparently better treatment of the material. More of the general theory of weak convergence of probabilities on separable metric spaces would be useful. Metrizability of the convergence is not brought up until late in the Appendix. The close relation of the Prokhorov metric and a metric for convergence in probability is (hence) not mentioned (see V. Strassen, Ann. Math. Statist. 36 (1965), 423-439; the reviewer, ibid. 39 (1968), 1563-1572). This relation would illuminate and organize such results as Theorems 4.1, 4.2 and 4.4 which give isolated, ad hoc connections between weak convergence of measures and nearness in probability. In the middle of p. 16, it should be noted that C*(S) consists of signed measures which need only be finitely additive if 5 is not compact. On p. 239, where the author twice speaks of separable subsets having nonmeasurable cardinal, he means "discrete" rather than "separable." Theorem 1.4 is Ulam's theorem that a Borel probability on a complete separable metric space is tight. Theorem 1 of Appendix 3 weakens completeness to topological completeness. After mentioning that probabilities on the rationals are tight, the author says it is an
Citations
More filters
Book
12 Dec 2012
TL;DR: Laszlo Lovasz has written an admirable treatise on the exciting new theory of graph limits and graph homomorphisms, an area of great importance in the study of large networks.
Abstract: Recently, it became apparent that a large number of the most interesting structures and phenomena of the world can be described by networks. To develop a mathematical theory of very large networks is an important challenge. This book describes one recent approach to this theory, the limit theory of graphs, which has emerged over the last decade. The theory has rich connections with other approaches to the study of large networks, such as "property testing" in computer science and regularity partition in graph theory. It has several applications in extremal graph theory, including the exact formulations and partial answers to very general questions, such as which problems in extremal graph theory are decidable. It also has less obvious connections with other parts of mathematics (classical and non-classical, like probability theory, measure theory, tensor algebras, and semidefinite optimization). This book explains many of these connections, first at an informal level to emphasize the need to apply more advanced mathematical methods, and then gives an exact development of the theory of the algebraic theory of graph homomorphisms and of the analytic theory of graph limits. This is an amazing book: readable, deep, and lively. It sets out this emerging area, makes connections between old classical graph theory and graph limits, and charts the course of the future. --Persi Diaconis, Stanford University This book is a comprehensive study of the active topic of graph limits and an updated account of its present status. It is a beautiful volume written by an outstanding mathematician who is also a great expositor. --Noga Alon, Tel Aviv University, Israel Modern combinatorics is by no means an isolated subject in mathematics, but has many rich and interesting connections to almost every area of mathematics and computer science. The research presented in Lovasz's book exemplifies this phenomenon. This book presents a wonderful opportunity for a student in combinatorics to explore other fields of mathematics, or conversely for experts in other areas of mathematics to become acquainted with some aspects of graph theory. --Terence Tao, University of California, Los Angeles, CA Laszlo Lovasz has written an admirable treatise on the exciting new theory of graph limits and graph homomorphisms, an area of great importance in the study of large networks. It is an authoritative, masterful text that reflects Lovasz's position as the main architect of this rapidly developing theory. The book is a must for combinatorialists, network theorists, and theoretical computer scientists alike. --Bela Bollobas, Cambridge University, UK

896 citations


Cites background from "Convergence of probability measures..."

  • ...Equivalently, the uniform measure on Sn converges weakly to the uniform measure on [0, 1] (see Billingsley [1999] for more on related notions like uniform distribution of sequences)....

    [...]

  • ...Billingsley [1999]; this is not the most general form), for a compact metric space K, the space P(K) is compact in the topology of weak convergence, and also metrizable....

    [...]

Book
01 Feb 2010
TL;DR: Rough path analysis provides a fresh perspective on Ito's important theory of stochastic differential equations as mentioned in this paper, and it has been used extensively in the analysis of partial differential equations.
Abstract: Rough path analysis provides a fresh perspective on Ito's important theory of stochastic differential equations. Key theorems of modern stochastic analysis (existence and limit theorems for stochastic flows, Freidlin-Wentzell theory, the Stroock-Varadhan support description) can be obtained with dramatic simplifications. Classical approximation results and their limitations (Wong-Zakai, McShane's counterexample) receive 'obvious' rough path explanations. Evidence is building that rough paths will play an important role in the future analysis of stochastic partial differential equations and the authors include some first results in this direction. They also emphasize interactions with other parts of mathematics, including Caratheodory geometry, Dirichlet forms and Malliavin calculus. Based on successful courses at the graduate level, this up-to-date introduction presents the theory of rough paths and its applications to stochastic analysis. Examples, explanations and exercises make the book accessible to graduate students and researchers from a variety of fields.

722 citations

Book ChapterDOI
03 Oct 2009
TL;DR: The main result is that the required exploration-exploitation trade-offs are qualitatively different, in view of a general lower bound on the simple regret in terms of the cumulative regret.
Abstract: We consider the framework of stochastic multi-armed bandit problems and study the possibilities and limitations of strategies that perform an online exploration of the arms. The strategies are assessed in terms of their simple regret, a regret notion that captures the fact that exploration is only constrained by the number of available rounds (not necessarily known in advance), in contrast to the case when the cumulative regret is considered and when exploitation needs to be performed at the same time.We believe that this performance criterion is suited to situations when the cost of pulling an arm is expressed in terms of resources rather than rewards. We discuss the links between the simple and the cumulative regret. The main result is that the required exploration-exploitation trade-offs are qualitatively different, in view of a general lower bound on the simple regret in terms of the cumulative regret.

445 citations

Journal ArticleDOI
TL;DR: This work evaluates the communication limits imposed by low-precision ADC for transmission over the real discrete-time additive white Gaussian noise (AWGN) channel, under an average power constraint on the input.
Abstract: As communication systems scale up in speed and bandwidth, the cost and power consumption of high-precision (e.g., 8-12 bits) analog-to-digital conversion (ADC) becomes the limiting factor in modern transceiver architectures based on digital signal processing. In this work, we explore the impact of lowering the precision of the ADC on the performance of the communication link. Specifically, we evaluate the communication limits imposed by low-precision ADC (e.g., 1-3 bits) for transmission over the real discrete-time additive white Gaussian noise (AWGN) channel, under an average power constraint on the input. For an ADC with K quantization bins (i.e., a precision of log2 K bits), we show that the input distribution need not have any more than K+1 mass points to achieve the channel capacity. For 2-bin (1-bit) symmetric quantization, this result is tightened to show that binary antipodal signaling is optimum for any signal-to- noise ratio (SNR). For multi-bit quantization, a dual formulation of the channel capacity problem is used to obtain tight upper bounds on the capacity. The cutting-plane algorithm is employed to compute the capacity numerically, and the results obtained are used to make the following encouraging observations : (a) up to a moderately high SNR of 20 dB, 2-3 bit quantization results in only 10-20% reduction of spectral efficiency compared to unquantized observations, (b) standard equiprobable pulse amplitude modulated input with quantizer thresholds set to implement maximum likelihood hard decisions is asymptotically optimum at high SNR, and works well at low to moderate SNRs as well.

410 citations


Cites result from "Convergence of probability measures..."

  • ...The notion of weak* convergence here is actually the same as the standard weak convergence defined in probability theory [32]....

    [...]

Book
26 Oct 2017
TL;DR: In this article, the authors developed the theory of the Poisson process in the setting of a general abstract measure space, establishing basic results and properties as well as certain advanced topics in the stochastic analysis of the poisson process.
Abstract: The Poisson process, a core object in modern probability, enjoys a richer theory than is sometimes appreciated. This volume develops the theory in the setting of a general abstract measure space, establishing basic results and properties as well as certain advanced topics in the stochastic analysis of the Poisson process. Also discussed are applications and related topics in stochastic geometry, including stationary point processes, the Boolean model, the Gilbert graph, stable allocations, and hyperplane processes. Comprehensive, rigorous, and self-contained, this text is ideal for graduate courses or for self-study, with a substantial number of exercises for each chapter. Mathematical prerequisites, mainly a sound knowledge of measure-theoretic probability, are kept in the background, but are reviewed comprehensively in the appendix. The authors are well-known researchers in probability theory; especially stochastic geometry. Their approach is informed both by their research and by their extensive experience in teaching at undergraduate and graduate levels.

363 citations


Cites background from "Convergence of probability measures..."

  • ...The following result is proved (but not stated) in [12]....

    [...]

References
More filters
Book
12 Dec 2012
TL;DR: Laszlo Lovasz has written an admirable treatise on the exciting new theory of graph limits and graph homomorphisms, an area of great importance in the study of large networks.
Abstract: Recently, it became apparent that a large number of the most interesting structures and phenomena of the world can be described by networks. To develop a mathematical theory of very large networks is an important challenge. This book describes one recent approach to this theory, the limit theory of graphs, which has emerged over the last decade. The theory has rich connections with other approaches to the study of large networks, such as "property testing" in computer science and regularity partition in graph theory. It has several applications in extremal graph theory, including the exact formulations and partial answers to very general questions, such as which problems in extremal graph theory are decidable. It also has less obvious connections with other parts of mathematics (classical and non-classical, like probability theory, measure theory, tensor algebras, and semidefinite optimization). This book explains many of these connections, first at an informal level to emphasize the need to apply more advanced mathematical methods, and then gives an exact development of the theory of the algebraic theory of graph homomorphisms and of the analytic theory of graph limits. This is an amazing book: readable, deep, and lively. It sets out this emerging area, makes connections between old classical graph theory and graph limits, and charts the course of the future. --Persi Diaconis, Stanford University This book is a comprehensive study of the active topic of graph limits and an updated account of its present status. It is a beautiful volume written by an outstanding mathematician who is also a great expositor. --Noga Alon, Tel Aviv University, Israel Modern combinatorics is by no means an isolated subject in mathematics, but has many rich and interesting connections to almost every area of mathematics and computer science. The research presented in Lovasz's book exemplifies this phenomenon. This book presents a wonderful opportunity for a student in combinatorics to explore other fields of mathematics, or conversely for experts in other areas of mathematics to become acquainted with some aspects of graph theory. --Terence Tao, University of California, Los Angeles, CA Laszlo Lovasz has written an admirable treatise on the exciting new theory of graph limits and graph homomorphisms, an area of great importance in the study of large networks. It is an authoritative, masterful text that reflects Lovasz's position as the main architect of this rapidly developing theory. The book is a must for combinatorialists, network theorists, and theoretical computer scientists alike. --Bela Bollobas, Cambridge University, UK

896 citations

Book
01 Feb 2010
TL;DR: Rough path analysis provides a fresh perspective on Ito's important theory of stochastic differential equations as mentioned in this paper, and it has been used extensively in the analysis of partial differential equations.
Abstract: Rough path analysis provides a fresh perspective on Ito's important theory of stochastic differential equations. Key theorems of modern stochastic analysis (existence and limit theorems for stochastic flows, Freidlin-Wentzell theory, the Stroock-Varadhan support description) can be obtained with dramatic simplifications. Classical approximation results and their limitations (Wong-Zakai, McShane's counterexample) receive 'obvious' rough path explanations. Evidence is building that rough paths will play an important role in the future analysis of stochastic partial differential equations and the authors include some first results in this direction. They also emphasize interactions with other parts of mathematics, including Caratheodory geometry, Dirichlet forms and Malliavin calculus. Based on successful courses at the graduate level, this up-to-date introduction presents the theory of rough paths and its applications to stochastic analysis. Examples, explanations and exercises make the book accessible to graduate students and researchers from a variety of fields.

722 citations

Posted Content
TL;DR: In this paper, a training procedure that augments model parameter updates with worst-case perturbations of training data is proposed to guarantee moderate levels of robustness with little computational or statistical cost relative to empirical risk minimization.
Abstract: Neural networks are vulnerable to adversarial examples and researchers have proposed many heuristic attack and defense mechanisms. We address this problem through the principled lens of distributionally robust optimization, which guarantees performance under adversarial input perturbations. By considering a Lagrangian penalty formulation of perturbing the underlying data distribution in a Wasserstein ball, we provide a training procedure that augments model parameter updates with worst-case perturbations of training data. For smooth losses, our procedure provably achieves moderate levels of robustness with little computational or statistical cost relative to empirical risk minimization. Furthermore, our statistical guarantees allow us to efficiently certify robustness for the population loss. For imperceptible perturbations, our method matches or outperforms heuristic approaches.

506 citations

Book ChapterDOI
03 Oct 2009
TL;DR: The main result is that the required exploration-exploitation trade-offs are qualitatively different, in view of a general lower bound on the simple regret in terms of the cumulative regret.
Abstract: We consider the framework of stochastic multi-armed bandit problems and study the possibilities and limitations of strategies that perform an online exploration of the arms. The strategies are assessed in terms of their simple regret, a regret notion that captures the fact that exploration is only constrained by the number of available rounds (not necessarily known in advance), in contrast to the case when the cumulative regret is considered and when exploitation needs to be performed at the same time.We believe that this performance criterion is suited to situations when the cost of pulling an arm is expressed in terms of resources rather than rewards. We discuss the links between the simple and the cumulative regret. The main result is that the required exploration-exploitation trade-offs are qualitatively different, in view of a general lower bound on the simple regret in terms of the cumulative regret.

445 citations

Journal ArticleDOI
TL;DR: This work evaluates the communication limits imposed by low-precision ADC for transmission over the real discrete-time additive white Gaussian noise (AWGN) channel, under an average power constraint on the input.
Abstract: As communication systems scale up in speed and bandwidth, the cost and power consumption of high-precision (e.g., 8-12 bits) analog-to-digital conversion (ADC) becomes the limiting factor in modern transceiver architectures based on digital signal processing. In this work, we explore the impact of lowering the precision of the ADC on the performance of the communication link. Specifically, we evaluate the communication limits imposed by low-precision ADC (e.g., 1-3 bits) for transmission over the real discrete-time additive white Gaussian noise (AWGN) channel, under an average power constraint on the input. For an ADC with K quantization bins (i.e., a precision of log2 K bits), we show that the input distribution need not have any more than K+1 mass points to achieve the channel capacity. For 2-bin (1-bit) symmetric quantization, this result is tightened to show that binary antipodal signaling is optimum for any signal-to- noise ratio (SNR). For multi-bit quantization, a dual formulation of the channel capacity problem is used to obtain tight upper bounds on the capacity. The cutting-plane algorithm is employed to compute the capacity numerically, and the results obtained are used to make the following encouraging observations : (a) up to a moderately high SNR of 20 dB, 2-3 bit quantization results in only 10-20% reduction of spectral efficiency compared to unquantized observations, (b) standard equiprobable pulse amplitude modulated input with quantizer thresholds set to implement maximum likelihood hard decisions is asymptotically optimum at high SNR, and works well at low to moderate SNRs as well.

410 citations