scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Conversion of biomass to biofuels and life cycle assessment: a review

23 Jul 2021-Environmental Chemistry Letters (Springer International Publishing)-Vol. 19, Iss: 6, pp 1-44
TL;DR: In this article, a review of advances in biomass conversion to bio-fuels and their environmental impact by life cycle assessment is presented, focusing on drawbacks and advantages of the thermochemical and biochemical conversion routes of biomass into various fuels and the possibility of integrating these routes for better process efficiency.
Abstract: The global energy demand is projected to rise by almost 28% by 2040 compared to current levels. Biomass is a promising energy source for producing either solid or liquid fuels. Biofuels are alternatives to fossil fuels to reduce anthropogenic greenhouse gas emissions. Nonetheless, policy decisions for biofuels should be based on evidence that biofuels are produced in a sustainable manner. To this end, life cycle assessment (LCA) provides information on environmental impacts associated with biofuel production chains. Here, we review advances in biomass conversion to biofuels and their environmental impact by life cycle assessment. Processes are gasification, combustion, pyrolysis, enzymatic hydrolysis routes and fermentation. Thermochemical processes are classified into low temperature, below 300 °C, and high temperature, higher than 300 °C, i.e. gasification, combustion and pyrolysis. Pyrolysis is promising because it operates at a relatively lower temperature of up to 500 °C, compared to gasification, which operates at 800–1300 °C. We focus on 1) the drawbacks and advantages of the thermochemical and biochemical conversion routes of biomass into various fuels and the possibility of integrating these routes for better process efficiency; 2) methodological approaches and key findings from 40 LCA studies on biomass to biofuel conversion pathways published from 2019 to 2021; and 3) bibliometric trends and knowledge gaps in biomass conversion into biofuels using thermochemical and biochemical routes. The integration of hydrothermal and biochemical routes is promising for the circular economy.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the authors present a strategy to reach a carbon neutral economy by examining the outcome goals of the 26th summit of the United Nations Climate Change Conference of the Parties (COP 26).
Abstract: Abstract The increasing global industrialization and over-exploitation of fossil fuels has induced the release of greenhouse gases, leading to an increase in global temperature and causing environmental issues. There is therefore an urgent necessity to reach net-zero carbon emissions. Only 4.5% of countries have achieved carbon neutrality, and most countries are still planning to do so by 2050–2070. Moreover, synergies between different countries have hampered synergies between adaptation and mitigation policies, as well as their co-benefits. Here, we present a strategy to reach a carbon neutral economy by examining the outcome goals of the 26th summit of the United Nations Climate Change Conference of the Parties (COP 26). Methods have been designed for mapping carbon emissions, such as input–output models, spatial systems, geographic information system maps, light detection and ranging techniques, and logarithmic mean divisia. We present decarbonization technologies and initiatives, and negative emissions technologies, and we discuss carbon trading and carbon tax. We propose plans for carbon neutrality such as shifting away from fossil fuels toward renewable energy, and the development of low-carbon technologies, low-carbon agriculture, changing dietary habits and increasing the value of food and agricultural waste. Developing resilient buildings and cities, introducing decentralized energy systems, and the electrification of the transportation sector is also necessary. We also review the life cycle analysis of carbon neutral systems.

150 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared the environmental impact of hydrogen production routes by life cycle analysis and showed that combining electrolysis-generated hydrogen with hydrogen storage in underground porous media such as geological reservoirs and salt caverns is well suited for shifting excess off-peak energy to meet dispatchable on-peak demand.
Abstract: Dihydrogen (H2), commonly named ‘hydrogen’, is increasingly recognised as a clean and reliable energy vector for decarbonisation and defossilisation by various sectors. The global hydrogen demand is projected to increase from 70 million tonnes in 2019 to 120 million tonnes by 2024. Hydrogen development should also meet the seventh goal of ‘affordable and clean energy’ of the United Nations. Here we review hydrogen production and life cycle analysis, hydrogen geological storage and hydrogen utilisation. Hydrogen is produced by water electrolysis, steam methane reforming, methane pyrolysis and coal gasification. We compare the environmental impact of hydrogen production routes by life cycle analysis. Hydrogen is used in power systems, transportation, hydrocarbon and ammonia production, and metallugical industries. Overall, combining electrolysis-generated hydrogen with hydrogen storage in underground porous media such as geological reservoirs and salt caverns is well suited for shifting excess off-peak energy to meet dispatchable on-peak demand.

103 citations

Journal ArticleDOI
TL;DR: In this article , the main constraints affecting industrial lignin valorization, possible solutions and future perspectives, in the light of its abundance and its potential applications reported in the scientific literature are highlighted.

75 citations

Journal ArticleDOI
01 Mar 2022-Fuel
TL;DR: In this paper , the use of nanoparticles to suppress the formation of inhibitory compounds during the pre-treatment and conversion process of biomass conversion is discussed, with an emphasis on safety issues and limitations associated with the utilization of nanomaterials in the current approach.

53 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, an updated review on fast pyrolysis of biomass for production of a liquid usually referred to as bio-oil is provided, including the major reaction systems.
Abstract: This paper provides an updated review on fast pyrolysis of biomass for production of a liquid usually referred to as bio-oil. The technology of fast pyrolysis is described including the major reaction systems. The primary liquid product is characterised by reference to the many properties that impact on its use. These properties have caused increasingly extensive research to be undertaken to address properties that need modification and this area is reviewed in terms of physical, catalytic and chemical upgrading. Of particular note is the increasing diversity of methods and catalysts and particularly the complexity and sophistication of multi-functional catalyst systems. It is also important to see more companies involved in this technology area and increased take-up of evolving upgrading processes. © 2011 Elsevier Ltd.

3,727 citations

Journal ArticleDOI
TL;DR: This paper reviews the most interesting technologies for ethanol production from lignocellulose and it points out several key properties that should be targeted for low-cost and advanced pretreatment processes.

3,580 citations

Journal ArticleDOI
Yan Lin1, Shuzo Tanaka1
TL;DR: The prospects included are fermentation technology converting xylose to ethanol, cellulase enzyme utilized in the hydrolysis of lignocellulosic materials, immobilization of the microorganism in large systems, simultaneous saccharification and fermentation, and sugar conversion into ethanol.
Abstract: In recent years, growing attention has been devoted to the conversion of biomass into fuel ethanol, considered the cleanest liquid fuel alternative to fossil fuels. Significant advances have been made towards the technology of ethanol fermentation. This review provides practical examples and gives a broad overview of the current status of ethanol fermentation including biomass resources, microorganisms, and technology. Also, the promising prospects of ethanol fermentation are especially introduced. The prospects included are fermentation technology converting xylose to ethanol, cellulase enzyme utilized in the hydrolysis of lignocellulosic materials, immobilization of the microorganism in large systems, simultaneous saccharification and fermentation, and sugar conversion into ethanol.

1,610 citations

Journal ArticleDOI
01 May 2011-Energy
TL;DR: In this paper, the authors present a review of the current status of the hydrothermal liquefaction of biomass with the aim of describing the current state of the technology, which is a medium-temperature, high-pressure thermochemical process which produces a liquid product, often called bio-oil or bi-crude.

1,451 citations

Journal ArticleDOI
TL;DR: In this paper, the structural, proximate and ultimate analyses of biomass and wastes differ considerably, some properties of the biomass samples such as the hydrogen content, the sulfur content and the ignition temperatures changed in a narrow interval.

1,403 citations