scispace - formally typeset
Open AccessBook

Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles

Reads0
Chats0
TLDR
In this paper, a new framework based on matrix theory is proposed to analyze and design cooperative controls for a group of individual dynamical systems whose outputs are sensed by or communicated to others in an intermittent, dynamically changing, and local manner.
Abstract
In this paper, a new framework based on matrix theory is proposed to analyze and design cooperative controls for a group of individual dynamical systems whose outputs are sensed by or communicated to others in an intermittent, dynamically changing, and local manner. In the framework, sensing/communication is described mathematically by a time-varying matrix whose dimension is equal to the number of dynamical systems in the group and whose elements assume piecewise-constant and binary values. Dynamical systems are generally heterogeneous and can be transformed into a canonical form of different, arbitrary, but finite relative degrees. Utilizing a set of new results on augmentation of irreducible matrices and on lower triangulation of reducible matrices, the framework allows a designer to study how a general local-and-output-feedback cooperative control can determine group behaviors of the dynamical systems and to see how changes of sensing/communication would impact the group behaviors over time. A necessary and sufficient condition on convergence of a multiplicative sequence of reducible row-stochastic (diagonally positive) matrices is explicitly derived, and through simple choices of a gain matrix in the cooperative control law, the overall closed-loop system is shown to exhibit cooperative behaviors (such as single group behavior, multiple group behaviors, adaptive cooperative behavior for the group, and cooperative formation including individual behaviors). Examples, including formation control of nonholonomic systems in the chained form, are used to illustrate the proposed framework.

read more

Citations
More filters
Journal ArticleDOI

An Overview of Recent Progress in the Study of Distributed Multi-Agent Coordination

TL;DR: In this article, the authors reviewed some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006 and proposed several promising research directions along with some open problems that are deemed important for further investigations.
Posted Content

An Overview of Recent Progress in the Study of Distributed Multi-agent Coordination

TL;DR: In this paper, the authors reviewed some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006, and proposed several promising research directions along with some open problems that are deemed important for further investigations.
Journal ArticleDOI

Optimal Design for Synchronization of Cooperative Systems: State Feedback, Observer and Output Feedback

TL;DR: It is shown that unbounded synchronization regions that achieve synchronization on arbitrary digraphs containing a spanning tree can be guaranteed by using linear quadratic regulator based optimal control and observer design methods at each node.
Journal ArticleDOI

Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics

TL;DR: A practical design method is developed for cooperative tracking control of higher-order nonlinear systems with a dynamic leader using a robust adaptive neural network controller for each follower node such that all follower nodes ultimately synchronize to the leader node with bounded residual errors.
Journal ArticleDOI

Designing Fully Distributed Consensus Protocols for Linear Multi-Agent Systems With Directed Graphs

TL;DR: A distributed adaptive consensus protocol is designed to achieve leader-follower consensus in the presence of a leader with a zero input for any communication graph containing a directed spanning tree with the leader as the root node.
References
More filters
Journal ArticleDOI

Consensus problems in networks of agents with switching topology and time-delays

TL;DR: A distinctive feature of this work is to address consensus problems for networks with directed information flow by establishing a direct connection between the algebraic connectivity of the network and the performance of a linear consensus protocol.
Journal ArticleDOI

Coordination of groups of mobile autonomous agents using nearest neighbor rules

TL;DR: A theoretical explanation for the observed behavior of the Vicsek model, which proves to be a graphic example of a switched linear system which is stable, but for which there does not exist a common quadratic Lyapunov function.
Proceedings ArticleDOI

Flocks, herds and schools: A distributed behavioral model

TL;DR: In this article, an approach based on simulation as an alternative to scripting the paths of each bird individually is explored, with the simulated birds being the particles and the aggregate motion of the simulated flock is created by a distributed behavioral model much like that at work in a natural flock; the birds choose their own course.
Journal ArticleDOI

Novel Type of Phase Transition in a System of Self-Driven Particles

TL;DR: Numerical evidence is presented that this model results in a kinetic phase transition from no transport to finite net transport through spontaneous symmetry breaking of the rotational symmetry.
Related Papers (5)