scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Cooperative diversity in wireless networks: Efficient protocols and outage behavior

01 Dec 2004-IEEE Transactions on Information Theory (Institute of Electrical and Electronics Engineers (IEEE))-Vol. 50, Iss: 12, pp 3062-3080
TL;DR: Using distributed antennas, this work develops and analyzes low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks and develops performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading.
Abstract: We develop and analyze low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks. The underlying techniques exploit space diversity available through cooperating terminals' relaying signals for one another. We outline several strategies employed by the cooperating radios, including fixed relaying schemes such as amplify-and-forward and decode-and-forward, selection relaying schemes that adapt based upon channel measurements between the cooperating terminals, and incremental relaying schemes that adapt based upon limited feedback from the destination terminal. We develop performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading, focusing on the high signal-to-noise ratio (SNR) regime. Except for fixed decode-and-forward, all of our cooperative diversity protocols are efficient in the sense that they achieve full diversity (i.e., second-order diversity in the case of two terminals), and, moreover, are close to optimum (within 1.5 dB) in certain regimes. Thus, using distributed antennas, we can provide the powerful benefits of space diversity without need for physical arrays, though at a loss of spectral efficiency due to half-duplex operation and possibly at the cost of additional receive hardware. Applicable to any wireless setting, including cellular or ad hoc networks-wherever space constraints preclude the use of physical arrays-the performance characterizations reveal that large power or energy savings result from the use of these protocols.
Citations
More filters
Book
01 Jan 2005

9,038 citations

Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations

Journal ArticleDOI
TL;DR: This work develops and analyzes space-time coded cooperative diversity protocols for combating multipath fading across multiple protocol layers in a wireless network and demonstrates that these protocols achieve full spatial diversity in the number of cooperating terminals, not just theNumber of decoding relays, and can be used effectively for higher spectral efficiencies than repetition-based schemes.
Abstract: We develop and analyze space-time coded cooperative diversity protocols for combating multipath fading across multiple protocol layers in a wireless network. The protocols exploit spatial diversity available among a collection of distributed terminals that relay messages for one another in such a manner that the destination terminal can average the fading, even though it is unknown a priori which terminals will be involved. In particular, a source initiates transmission to its destination, and many relays potentially receive the transmission. Those terminals that can fully decode the transmission utilize a space-time code to cooperatively relay to the destination. We demonstrate that these protocols achieve full spatial diversity in the number of cooperating terminals, not just the number of decoding relays, and can be used effectively for higher spectral efficiencies than repetition-based schemes. We discuss issues related to space-time code design for these protocols, emphasizing codes that readily allow for appealing distributed versions.

4,385 citations


Cites background or methods from "Cooperative diversity in wireless n..."

  • ...Both classes of algorithms consist of two transmission phases, as in [3], [4]....

    [...]

  • ...As in [3], [4], limited feedback from the destination terminal provides one means of overcoming such bandwidth inefficiencies, but we do not repeat the analysis here....

    [...]

  • ...As in [3], [4], we focus on the case of slow fading and measure performance by outage probability to isolate the benefits of space diversity....

    [...]

  • ...This section highlights the system model that we employ to develop extensions of the repetition-based algorithms in [3], [4] as well as the space–time-coded cooperative diversity algorithms....

    [...]

  • ...In our setting with fading, as we increase , the two parameterizations yield tradeoffs between different aspects of system performance: results under exhibit a tradeoff between the normalized SNR gain and spectral efficiency of a protocol, while results under exhibit a tradeoff between the diversity order and normalized spectral efficiency of a protocol [3], [4]....

    [...]

Journal ArticleDOI
TL;DR: A novel scheme that first selects the best relay from a set of M available relays and then uses this "best" relay for cooperation between the source and the destination and achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols.
Abstract: Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However, most of the proposed solutions require distributed space-time coding algorithms, the careful design of which is left for future investigation if there is more than one cooperative relay. We propose a novel scheme that alleviates these problems and provides diversity gains on the order of the number of relays in the network. Our scheme first selects the best relay from a set of M available relays and then uses this "best" relay for cooperation between the source and the destination. We develop and analyze a distributed method to select the best relay that requires no topology information and is based on local measurements of the instantaneous channel conditions. This method also requires no explicit communication among the relays. The success (or failure) to select the best available path depends on the statistics of the wireless channel, and a methodology to evaluate performance for any kind of wireless channel statistics, is provided. Information theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols, where coordination and distributed space-time coding for M relay nodes is required, such as those proposed by Laneman and Wornell (2003). The simplicity of the technique allows for immediate implementation in existing radio hardware and its adoption could provide for improved flexibility, reliability, and efficiency in future 4G wireless systems.

3,153 citations


Cites background from "Cooperative diversity in wireless n..."

  • ...Digital Object Identifier 10.1109/JSAC.2005.862417 The best relay selection algorithm lends itself naturally into cooperative diversity protocols [6], [14], [15], which have been recently proposed to improve reliability in wireless communication systems using distributed virtual antennas....

    [...]

Journal ArticleDOI
TL;DR: The capacity results generalize broadly, including to multiantenna transmission with Rayleigh fading, single-bounce fading, certain quasi-static fading problems, cases where partial channel knowledge is available at the transmitters, and cases where local user cooperation is permitted.
Abstract: Coding strategies that exploit node cooperation are developed for relay networks. Two basic schemes are studied: the relays decode-and-forward the source message to the destination, or they compress-and-forward their channel outputs to the destination. The decode-and-forward scheme is a variant of multihopping, but in addition to having the relays successively decode the message, the transmitters cooperate and each receiver uses several or all of its past channel output blocks to decode. For the compress-and-forward scheme, the relays take advantage of the statistical dependence between their channel outputs and the destination's channel output. The strategies are applied to wireless channels, and it is shown that decode-and-forward achieves the ergodic capacity with phase fading if phase information is available only locally, and if the relays are near the source node. The ergodic capacity coincides with the rate of a distributed antenna array with full cooperation even though the transmitting antennas are not colocated. The capacity results generalize broadly, including to multiantenna transmission with Rayleigh fading, single-bounce fading, certain quasi-static fading problems, cases where partial channel knowledge is available at the transmitters, and cases where local user cooperation is permitted. The results further extend to multisource and multidestination networks such as multiaccess and broadcast relay channels.

2,842 citations

References
More filters
Book
01 Jan 1991
TL;DR: The author examines the role of entropy, inequality, and randomness in the design of codes and the construction of codes in the rapidly changing environment.
Abstract: Preface to the Second Edition. Preface to the First Edition. Acknowledgments for the Second Edition. Acknowledgments for the First Edition. 1. Introduction and Preview. 1.1 Preview of the Book. 2. Entropy, Relative Entropy, and Mutual Information. 2.1 Entropy. 2.2 Joint Entropy and Conditional Entropy. 2.3 Relative Entropy and Mutual Information. 2.4 Relationship Between Entropy and Mutual Information. 2.5 Chain Rules for Entropy, Relative Entropy, and Mutual Information. 2.6 Jensen's Inequality and Its Consequences. 2.7 Log Sum Inequality and Its Applications. 2.8 Data-Processing Inequality. 2.9 Sufficient Statistics. 2.10 Fano's Inequality. Summary. Problems. Historical Notes. 3. Asymptotic Equipartition Property. 3.1 Asymptotic Equipartition Property Theorem. 3.2 Consequences of the AEP: Data Compression. 3.3 High-Probability Sets and the Typical Set. Summary. Problems. Historical Notes. 4. Entropy Rates of a Stochastic Process. 4.1 Markov Chains. 4.2 Entropy Rate. 4.3 Example: Entropy Rate of a Random Walk on a Weighted Graph. 4.4 Second Law of Thermodynamics. 4.5 Functions of Markov Chains. Summary. Problems. Historical Notes. 5. Data Compression. 5.1 Examples of Codes. 5.2 Kraft Inequality. 5.3 Optimal Codes. 5.4 Bounds on the Optimal Code Length. 5.5 Kraft Inequality for Uniquely Decodable Codes. 5.6 Huffman Codes. 5.7 Some Comments on Huffman Codes. 5.8 Optimality of Huffman Codes. 5.9 Shannon-Fano-Elias Coding. 5.10 Competitive Optimality of the Shannon Code. 5.11 Generation of Discrete Distributions from Fair Coins. Summary. Problems. Historical Notes. 6. Gambling and Data Compression. 6.1 The Horse Race. 6.2 Gambling and Side Information. 6.3 Dependent Horse Races and Entropy Rate. 6.4 The Entropy of English. 6.5 Data Compression and Gambling. 6.6 Gambling Estimate of the Entropy of English. Summary. Problems. Historical Notes. 7. Channel Capacity. 7.1 Examples of Channel Capacity. 7.2 Symmetric Channels. 7.3 Properties of Channel Capacity. 7.4 Preview of the Channel Coding Theorem. 7.5 Definitions. 7.6 Jointly Typical Sequences. 7.7 Channel Coding Theorem. 7.8 Zero-Error Codes. 7.9 Fano's Inequality and the Converse to the Coding Theorem. 7.10 Equality in the Converse to the Channel Coding Theorem. 7.11 Hamming Codes. 7.12 Feedback Capacity. 7.13 Source-Channel Separation Theorem. Summary. Problems. Historical Notes. 8. Differential Entropy. 8.1 Definitions. 8.2 AEP for Continuous Random Variables. 8.3 Relation of Differential Entropy to Discrete Entropy. 8.4 Joint and Conditional Differential Entropy. 8.5 Relative Entropy and Mutual Information. 8.6 Properties of Differential Entropy, Relative Entropy, and Mutual Information. Summary. Problems. Historical Notes. 9. Gaussian Channel. 9.1 Gaussian Channel: Definitions. 9.2 Converse to the Coding Theorem for Gaussian Channels. 9.3 Bandlimited Channels. 9.4 Parallel Gaussian Channels. 9.5 Channels with Colored Gaussian Noise. 9.6 Gaussian Channels with Feedback. Summary. Problems. Historical Notes. 10. Rate Distortion Theory. 10.1 Quantization. 10.2 Definitions. 10.3 Calculation of the Rate Distortion Function. 10.4 Converse to the Rate Distortion Theorem. 10.5 Achievability of the Rate Distortion Function. 10.6 Strongly Typical Sequences and Rate Distortion. 10.7 Characterization of the Rate Distortion Function. 10.8 Computation of Channel Capacity and the Rate Distortion Function. Summary. Problems. Historical Notes. 11. Information Theory and Statistics. 11.1 Method of Types. 11.2 Law of Large Numbers. 11.3 Universal Source Coding. 11.4 Large Deviation Theory. 11.5 Examples of Sanov's Theorem. 11.6 Conditional Limit Theorem. 11.7 Hypothesis Testing. 11.8 Chernoff-Stein Lemma. 11.9 Chernoff Information. 11.10 Fisher Information and the Cram-er-Rao Inequality. Summary. Problems. Historical Notes. 12. Maximum Entropy. 12.1 Maximum Entropy Distributions. 12.2 Examples. 12.3 Anomalous Maximum Entropy Problem. 12.4 Spectrum Estimation. 12.5 Entropy Rates of a Gaussian Process. 12.6 Burg's Maximum Entropy Theorem. Summary. Problems. Historical Notes. 13. Universal Source Coding. 13.1 Universal Codes and Channel Capacity. 13.2 Universal Coding for Binary Sequences. 13.3 Arithmetic Coding. 13.4 Lempel-Ziv Coding. 13.5 Optimality of Lempel-Ziv Algorithms. Compression. Summary. Problems. Historical Notes. 14. Kolmogorov Complexity. 14.1 Models of Computation. 14.2 Kolmogorov Complexity: Definitions and Examples. 14.3 Kolmogorov Complexity and Entropy. 14.4 Kolmogorov Complexity of Integers. 14.5 Algorithmically Random and Incompressible Sequences. 14.6 Universal Probability. 14.7 Kolmogorov complexity. 14.9 Universal Gambling. 14.10 Occam's Razor. 14.11 Kolmogorov Complexity and Universal Probability. 14.12 Kolmogorov Sufficient Statistic. 14.13 Minimum Description Length Principle. Summary. Problems. Historical Notes. 15. Network Information Theory. 15.1 Gaussian Multiple-User Channels. 15.2 Jointly Typical Sequences. 15.3 Multiple-Access Channel. 15.4 Encoding of Correlated Sources. 15.5 Duality Between Slepian-Wolf Encoding and Multiple-Access Channels. 15.6 Broadcast Channel. 15.7 Relay Channel. 15.8 Source Coding with Side Information. 15.9 Rate Distortion with Side Information. 15.10 General Multiterminal Networks. Summary. Problems. Historical Notes. 16. Information Theory and Portfolio Theory. 16.1 The Stock Market: Some Definitions. 16.2 Kuhn-Tucker Characterization of the Log-Optimal Portfolio. 16.3 Asymptotic Optimality of the Log-Optimal Portfolio. 16.4 Side Information and the Growth Rate. 16.5 Investment in Stationary Markets. 16.6 Competitive Optimality of the Log-Optimal Portfolio. 16.7 Universal Portfolios. 16.8 Shannon-McMillan-Breiman Theorem (General AEP). Summary. Problems. Historical Notes. 17. Inequalities in Information Theory. 17.1 Basic Inequalities of Information Theory. 17.2 Differential Entropy. 17.3 Bounds on Entropy and Relative Entropy. 17.4 Inequalities for Types. 17.5 Combinatorial Bounds on Entropy. 17.6 Entropy Rates of Subsets. 17.7 Entropy and Fisher Information. 17.8 Entropy Power Inequality and Brunn-Minkowski Inequality. 17.9 Inequalities for Determinants. 17.10 Inequalities for Ratios of Determinants. Summary. Problems. Historical Notes. Bibliography. List of Symbols. Index.

45,034 citations


"Cooperative diversity in wireless n..." refers background in this paper

  • ..., achievable rates, via three structurally different random coding sche mes: • facilitation [5, Theorem 2], in which the relay does not actively help the source, but rather, facilitates the sourc e transmission by inducing as little interference as possibl e; • cooperation [5, Theorem 1], in which the relay fully decodes the source message and retransmits, jointly with the source, a bin index (in the sense of Slepian-Wolf coding [14], [15]) of the previous source message; • observation2 [5, Theorem 6], in which the relay encodes a...

    [...]

  • ...quantized version of its received signal, using ideas from source coding with side information [14], [16], [17]....

    [...]

Book
01 Jan 1983

25,017 citations

Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Cooperative diversity in wireless n..." refers methods in this paper

  • ...The work of J. N. Laneman and G. W. Wornell was supported in part by ARL Federated Labs under Cooperative Agreement DAAD19-01-2-0011, and by the National Science Foundation under Grant CCR-9979363....

    [...]

Journal ArticleDOI
Emre Telatar1
01 Nov 1999
TL;DR: In this paper, the authors investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading, and derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas.
Abstract: We investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading. We derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas. We show that the potential gains of such multi-antenna systems over single-antenna systems is rather large under independenceassumptions for the fades and noises at different receiving antennas.

12,542 citations

01 Nov 1985
TL;DR: This month's guest columnist, Steve Bible, N7HPR, is completing a master’s degree in computer science at the Naval Postgraduate School in Monterey, California, and his research area closely follows his interest in amateur radio.
Abstract: Spread Spectrum It’s not just for breakfast anymore! Don't blame me, the title is the work of this month's guest columnist, Steve Bible, N7HPR (n7hpr@tapr.org). While cruising the net recently, I noticed a sudden bump in the number of times Spread Spectrum (SS) techniques were mentioned in the amateur digital areas. While QEX has discussed SS in the past, we haven't touched on it in this forum. Steve was a frequent cogent contributor, so I asked him to give us some background. Steve enlisted in the Navy in 1977 and became a Data Systems Technician, a repairman of shipboard computer systems. In 1985 he was accepted into the Navy’s Enlisted Commissioning Program and attended the University of Utah where he studied computer science. Upon graduation in 1988 he was commissioned an Ensign and entered Nuclear Power School. His subsequent assignment was onboard the USS Georgia, a trident submarine stationed in Bangor, Washington. Today Steve is a Lieutenant and he is completing a master’s degree in computer science at the Naval Postgraduate School in Monterey, California. His areas of interest are digital communications, amateur satellites, VHF/UHF contesting, and QRP. His research area closely follows his interest in amateur radio. His thesis topic is Multihop Packet Radio Routing Protocol Using Dynamic Power Control. Steve is also the AMSAT Area Coordinator for the Monterey Bay area. Here's Steve, I'll have some additional comments at the end.

8,781 citations


"Cooperative diversity in wireless n..." refers background in this paper

  • ...INTRODUCTION In wireless networks, signal fading arising from multipath propagation is a particularly severe channel impairment that can be mitigated through the use of diversity [1]....

    [...]