scispace - formally typeset
Open accessPosted Content

Coordinate Attention for Efficient Mobile Network Design.

Abstract: Recent studies on mobile network design have demonstrated the remarkable effectiveness of channel attention (e.g., the Squeeze-and-Excitation attention) for lifting model performance, but they generally neglect the positional information, which is important for generating spatially selective attention maps. In this paper, we propose a novel attention mechanism for mobile networks by embedding positional information into channel attention, which we call "coordinate attention". Unlike channel attention that transforms a feature tensor to a single feature vector via 2D global pooling, the coordinate attention factorizes channel attention into two 1D feature encoding processes that aggregate features along the two spatial directions, respectively. In this way, long-range dependencies can be captured along one spatial direction and meanwhile precise positional information can be preserved along the other spatial direction. The resulting feature maps are then encoded separately into a pair of direction-aware and position-sensitive attention maps that can be complementarily applied to the input feature map to augment the representations of the objects of interest. Our coordinate attention is simple and can be flexibly plugged into classic mobile networks, such as MobileNetV2, MobileNeXt, and EfficientNet with nearly no computational overhead. Extensive experiments demonstrate that our coordinate attention is not only beneficial to ImageNet classification but more interestingly, behaves better in down-stream tasks, such as object detection and semantic segmentation. Code is available at this https URL.

... read more

Citations
  More

18 results found


Open accessPosted Content
Abstract: Vision transformers (ViTs) have been successfully applied in image classification tasks recently. In this paper, we show that, unlike convolution neural networks (CNNs)that can be improved by stacking more convolutional layers, the performance of ViTs saturate fast when scaled to be deeper. More specifically, we empirically observe that such scaling difficulty is caused by the attention collapse issue: as the transformer goes deeper, the attention maps gradually become similar and even much the same after certain layers. In other words, the feature maps tend to be identical in the top layers of deep ViT models. This fact demonstrates that in deeper layers of ViTs, the self-attention mechanism fails to learn effective concepts for representation learning and hinders the model from getting expected performance gain. Based on above observation, we propose a simple yet effective method, named Re-attention, to re-generate the attention maps to increase their diversity at different layers with negligible computation and memory cost. The pro-posed method makes it feasible to train deeper ViT models with consistent performance improvements via minor modification to existing ViT models. Notably, when training a deep ViT model with 32 transformer blocks, the Top-1 classification accuracy can be improved by 1.6% on ImageNet. Code will be made publicly available

... read more

43 Citations


Open accessPosted Content
Zequn Qin1, Pengyi Zhang2, Fei Wu2, Xi Li2Institutions (2)
Abstract: Attention mechanism, especially channel attention, has gained great success in the computer vision field. Many works focus on how to design efficient channel attention mechanisms while ignoring a fundamental problem, i.e., using global average pooling (GAP) as the unquestionable pre-processing method. In this work, we start from a different view and rethink channel attention using frequency analysis. Based on the frequency analysis, we mathematically prove that the conventional GAP is a special case of the feature decomposition in the frequency domain. With the proof, we naturally generalize the pre-processing of channel attention mechanism in the frequency domain and propose FcaNet with novel multi-spectral channel attention. The proposed method is simple but effective. We can change only one line of code in the calculation to implement our method within existing channel attention methods. Moreover, the proposed method achieves state-of-the-art results compared with other channel attention methods on image classification, object detection, and instance segmentation tasks. Our method could improve by 1.8% in terms of Top-1 accuracy on ImageNet compared with the baseline SENet-50, with the same number of parameters and the same computational cost. Our code and models are publicly available at this https URL

... read more

Topics: Communication channel (55%), Frequency domain (53%)

17 Citations


Open accessPosted Content
Ailiang Lin, Bingzhi Chen1, Jiayu Xu, Zheng Zhang1  +1 moreInstitutions (1)
Abstract: Automatic medical image segmentation has made great progress benefit from the development of deep learning. However, most existing methods are based on convolutional neural networks (CNNs), which fail to build long-range dependencies and global context connections due to the limitation of receptive field in convolution operation. Inspired by the success of Transformer in modeling the long-range contextual information, some researchers have expended considerable efforts in designing the robust variants of Transformer-based U-Net. Moreover, the patch division used in vision transformers usually ignores the pixel-level intrinsic structural features inside each patch. To alleviate these problems, we propose a novel deep medical image segmentation framework called Dual Swin Transformer U-Net (DS-TransUNet), which might be the first attempt to concurrently incorporate the advantages of hierarchical Swin Transformer into both encoder and decoder of the standard U-shaped architecture to enhance the semantic segmentation quality of varying medical images. Unlike many prior Transformer-based solutions, the proposed DS-TransUNet first adopts dual-scale encoder subnetworks based on Swin Transformer to extract the coarse and fine-grained feature representations of different semantic scales. As the core component for our DS-TransUNet, a well-designed Transformer Interactive Fusion (TIF) module is proposed to effectively establish global dependencies between features of different scales through the self-attention mechanism. Furthermore, we also introduce the Swin Transformer block into decoder to further explore the long-range contextual information during the up-sampling process. Extensive experiments across four typical tasks for medical image segmentation demonstrate the effectiveness of DS-TransUNet, and show that our approach significantly outperforms the state-of-the-art methods.

... read more

3 Citations


Open accessPosted Content
Abstract: One essential problem in skeleton-based action recognition is how to extract discriminative features over all skeleton joints. However, the complexity of the recent State-Of-The-Art (SOTA) models for this task tends to be exceedingly sophisticated and over-parameterized. The low efficiency in model training and inference has increased the validation costs of model architectures in large-scale datasets. To address the above issue, recent advanced separable convolutional layers are embedded into an early fused Multiple Input Branches (MIB) network, constructing an efficient Graph Convolutional Network (GCN) baseline for skeleton-based action recognition. In addition, based on such the baseline, we design a compound scaling strategy to expand the model's width and depth synchronously, and eventually obtain a family of efficient GCN baselines with high accuracies and small amounts of trainable parameters, termed EfficientGCN-Bx, where ''x'' denotes the scaling coefficient. On two large-scale datasets, i.e., NTU RGB+D 60 and 120, the proposed EfficientGCN-B4 baseline outperforms other SOTA methods, e.g., achieving 91.7% accuracy on the cross-subject benchmark of NTU 60 dataset, while being 3.15x smaller and 3.21x faster than MS-G3D, which is one of the best SOTA methods. The source code in PyTorch version and the pretrained models are available at this https URL.

... read more

2 Citations


Open accessJournal ArticleDOI: 10.1016/J.MEDIA.2021.102301
Yilan Zhang1, Fengying Xie1, Xuedong Song1, Yushan Zheng1  +2 moreInstitutions (2)
Abstract: Dermoscopic image retrieval technology can provide dermatologists with valuable information such as similar confirmed skin disease cases and their diagnosis reports to assist doctors in their diagnosis. In this study, we design a dermoscopic image retrieval algorithm using convolutional neural networks (CNNs) and hash coding. A hybrid dilated convolution spatial attention module is proposed, which can focus on key information and suppress irrelevant information based on the complex morphological characteristics of dermoscopic images. Furthermore, we also propose a cauchy rotation invariance loss function in view of the skin lesion target without the main direction. This function constrains CNNs to learn output differences in samples from different angles and to make CNNs obtain a certain rotation invariance. Extensive experiments are conducted on a dermoscopic image dataset to verify the effectiveness and versatility of the proposed module, algorithm, and loss function. Experiment results show that the rotation-invariance deep hashing network with proposed spatial attention module obtains better performance on the dermoscopic image retrieval.

... read more

1 Citations


References
  More

49 results found


Open accessProceedings ArticleDOI: 10.1109/CVPR.2016.90
Kaiming He1, Xiangyu Zhang1, Shaoqing Ren1, Jian Sun1Institutions (1)
27 Jun 2016-
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

... read more

Topics: Deep learning (53%), Residual (53%), Convolutional neural network (53%) ... read more

93,356 Citations


Open accessProceedings Article
Karen Simonyan1, Andrew Zisserman1Institutions (1)
01 Jan 2015-
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

... read more

49,857 Citations


Open accessJournal ArticleDOI: 10.1007/S11263-015-0816-Y
Olga Russakovsky1, Jia Deng2, Hao Su1, Jonathan Krause1  +8 moreInstitutions (4)
Abstract: The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

... read more

25,260 Citations


Open accessBook ChapterDOI: 10.1007/978-3-319-10602-1_48
Tsung-Yi Lin1, Michael Maire2, Serge Belongie1, James Hays  +4 moreInstitutions (4)
06 Sep 2014-
Abstract: We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.

... read more

Topics: Object detection (54%)

18,843 Citations


Open accessBook ChapterDOI: 10.1007/978-3-319-46448-0_2
Wei Liu1, Dragomir Anguelov, Dumitru Erhan2, Christian Szegedy2  +3 moreInstitutions (3)
08 Oct 2016-
Abstract: We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. SSD is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stages and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, COCO, and ILSVRC datasets confirm that SSD has competitive accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. For \(300 \times 300\) input, SSD achieves 74.3 % mAP on VOC2007 test at 59 FPS on a Nvidia Titan X and for \(512 \times 512\) input, SSD achieves 76.9 % mAP, outperforming a comparable state of the art Faster R-CNN model. Compared to other single stage methods, SSD has much better accuracy even with a smaller input image size. Code is available at https://github.com/weiliu89/caffe/tree/ssd.

... read more

Topics: Minimum bounding box (51%)

11,792 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
202117
20201
Network Information
Related Papers (5)
Deep Residual Learning for Image Recognition27 Jun 2016

Kaiming He, Xiangyu Zhang +2 more

Squeeze-and-Excitation Networks18 Jun 2018

Jie Hu, Li Shen +3 more

Non-local Neural Networks18 Jun 2018

Xiaolong Wang, Ross Girshick +2 more

Rotate to Attend: Convolutional Triplet Attention Module01 Jan 2021

Diganta Misra, Trikay Nalamada +2 more

CBAM: Convolutional Block Attention Module08 Sep 2018

Sanghyun Woo, Jongchan Park +2 more