scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Coral reef bleaching: ecological perspectives

01 Mar 1993-Coral Reefs (Springer-Verlag)-Vol. 12, Iss: 1, pp 1-17
TL;DR: An effort must be made to understand the impact of bleaching on the remainder of the reef community and the long-term effects on competition, predation, symbioses, bioerosion and substrate condition, all factors that can influence coral recruitment and reef recovery.
Abstract: Coral reef bleaching, the whitening of diverse invertebrate taxa, results from the loss of symbiotic zooxanthellae and/or a reduction in photosynthetic pigment concentrations in zooxanthellae residing within the gastrodermal tissues of host animals. Of particular concern are the consequences of bleaching of large numbers of reef-building scleractinian corals and hydrocorals. Published records of coral reef bleaching events from 1870 to the present suggest that the frequency (60 major events from 1979 to 1990), scale (co-occurrence in many coral reef regions and often over the bathymetric depth range of corals) and severity (>95% mortality in some areas) of recent bleaching disturbances are unprecedented in the scientific literature. The causes of small scale, isolated bleaching events can often be explained by particular stressors (e.g., temperature, salinity, light, sedimentation, aerial exposure and pollutants), but attempts to explain large scale bleaching events in terms of possible global change (e.g., greenhouse warming, increased UV radiation flux, deteriorating ecosystem health, or some combination of the above) have not been convincing. Attempts to relate the severity and extent of large scale coral reef bleaching events to particular causes have been hampered by a lack of (a) standardized methods to assess bleaching and (b) continuous, long-term data bases of environmental conditions over the periods of interest. An effort must be made to understand the impact of bleaching on the remainder of the reef community and the long-term effects on competition, predation, symbioses, bioerosion and substrate condition, all factors that can influence coral recruitment and reef recovery. If projected rates of sea warming are realized by mid to late AD 2000, i.e. a 2°C increase in high latitude coral seas, the upper thermal tolerance limits of many reef-building corals could be exceeded. Present evidence suggests that many corals would be unable to adapt physiologically or genetically to such marked and rapid temperature increases.
Citations
More filters
Journal ArticleDOI
15 Aug 2003-Science
TL;DR: International integration of management strategies that support reef resilience need to be vigorously implemented, and complemented by strong policy decisions to reduce the rate of global warming.
Abstract: The diversity, frequency, and scale of human impacts on coral reefs are increasing to the extent that reefs are threatened globally. Projected increases in carbon dioxide and temperature over the next 50 years exceed the conditions under which coral reefs have flourished over the past half-million years. However, reefs will change rather than disappear entirely, with some species already showing far greater tolerance to climate change and coral bleaching than others. International integration of management strategies that support reef resilience need to be vigorously implemented, and complemented by strong policy decisions to reduce the rate of global warming.

3,664 citations

Journal ArticleDOI
TL;DR: The results suggest that the thermal tolerances of reef-building corals are likely to be exceeded every year within the next few decades, and suggests that unrestrained warming cannot occur without the loss and degradation of coral reefs on a global scale.
Abstract: Sea temperatures in many tropical regions have increased by almost 1 degrees C over the past 100 years, and are currently increasing at similar to 1-2 degrees C per century. Coral bleaching occurs when the thermal tolerance of corals and their photosynthetic symbionts (zooxanthellae) is exceeded. Mass coral bleaching has occurred in association with episodes of elevated sea temperatures over the past 20 years and involves the loss of the zooxanthellae following chronic photoinhibition. Mass bleaching has resulted in significant losses of live coral in many parts of the world. This paper considers the biochemical, physiological and ecological perspectives of coral bleaching. It also uses the outputs of four runs from three models of global climate change which simulate changes in sea temperature and hence how the frequency and intensity of bleaching events will change over the next 100 years. The results suggest that the thermal tolerances of reef-building corals are likely to be exceeded every year within the next few decades. Events as severe as the 1998 event, the worst on record, are likely to become commonplace within 20 years. Most information suggests that the capacity for acclimation by corals has already been exceeded, and that adaptation will be too slow to avert a decline in the quality of the world's reefs. The rapidity of the changes that are predicted indicates a major problem for tropical marine ecosystems and suggests that unrestrained warming cannot occur without the loss and degradation of coral reefs on a global scale.

3,627 citations

Journal ArticleDOI
TL;DR: Evaluated data on temperature and irradiance-induced bleaching, including long-term data sets which suggest that repeated bleaching events may be the consequence of a steadily rising background sea temperature that will in the future expose corals to an increasingly hostile environment, are evaluated.
Abstract: It has been over 10 years since the phenomenon of extensive coral bleaching was first described. In most cases bleaching has been attributed to elevated temperature, but other instances involving high solar irradiance, and sometimes disease, have also been documented. It is timely, in view of our concern about worldwide reef condition, to review knowledge of physical and biological factors involved in bleaching, the mechanisms of zooxanthellae and pigment loss, and the ecological consequences for coral communities. Here we evaluate recently acquired data on temperature and irradiance-induced bleaching, including long-term data sets which suggest that repeated bleaching events may be the consequence of a steadily rising background sea temperature that will in the future expose corals to an increasingly hostile environment. Cellular mechanisms of bleaching involve a variety of processes that include the degeneration of zooxanthellae in situ, release of zooxanthellae from mesenterial filaments and release of algae within host cells which become detached from the endoderm. Photo-protective defences (particularly carotenoid pigments) in zooxanthellae are likely to play an important role in limiting the bleaching response which is probably elicited by a combination of elevated temperature and irradiance in the field. The ability of corals to respond adaptively to recurrent bleaching episodes is not known, but preliminary evidence suggests that phenotypic responses of both corals and zooxanthellae may be significant.

1,431 citations

Journal ArticleDOI
05 Jan 2018-Science
TL;DR: Coral reefs in the present day have less time than in earlier periods to recover from bleaching events, and Tropical reef systems are transitioning to a new era in which the interval between recurrent bouts of coral bleaching is too short for a full recovery of mature assemblages.
Abstract: Tropical reef systems are transitioning to a new era in which the interval between recurrent bouts of coral bleaching is too short for a full recovery of mature assemblages. We analyzed bleaching records at 100 globally distributed reef locations from 1980 to 2016. The median return time between pairs of severe bleaching events has diminished steadily since 1980 and is now only 6 years. As global warming has progressed, tropical sea surface temperatures are warmer now during current La Nina conditions than they were during El Nino events three decades ago. Consequently, as we transition to the Anthropocene, coral bleaching is occurring more frequently in all El Nino–Southern Oscillation phases, increasing the likelihood of annual bleaching in the coming decades.

1,341 citations

Journal ArticleDOI
TL;DR: A community-structural shift occurred on Okinawan reefs, resulting in an increase in the relative abundance of massive and encrusting coral species, and two hypotheses whose synergistic effect may partially explain observed mortality patterns are suggested.
Abstract: Sea surface temperatures were warmer throughout 1998 at Sesoko Island, Japan, than in the 10 preceding years. Temperatures peaked at 2.8 °C above average, resulting in extensive coral bleaching and subsequent coral mortality. Using random quadrat surveys, we quantitatively documented the coral community structure one year before and one year after the bleaching event. The 1998 bleaching event reduced coral species richness by 61% and reduced coral cover by 85%. Colony morphology affected bleaching vulnerability and subsequent coral mortality. Finely branched corals were most susceptible, while massive and encrusting colonies survived. Most heavily impacted were the branched Acropora and pocilloporid corals, some of which showed local extinction. We suggest two hypotheses whose synergistic effect may partially explain observed mortality patterns (i.e. preferential survival of thick-tissued species, and shape-dependent differences in colony mass-transfer efficiency). A community-structural shift occurred on Okinawan reefs, resulting in an increase in the relative abundance of massive and encrusting coral species.

1,327 citations

References
More filters
Journal ArticleDOI
24 Mar 1978-Science
TL;DR: The commonly observed high diversity of trees in tropical rain forests and corals on tropical reefs is a nonequilibrium state which, if not disturbed further, will progress toward a low-diversity equilibrium community as mentioned in this paper.
Abstract: The commonly observed high diversity of trees in tropical rain forests and corals on tropical reefs is a nonequilibrium state which, if not disturbed further, will progress toward a low-diversity equilibrium community. This may not happen if gradual changes in climate favor different species. If equilibrium is reached, a lesser degree of diversity may be sustained by niche diversification or by a compensatory mortality that favors inferior competitors. However, tropical forests and reefs are subject to severe disturbances often enough that equilibrium may never be attained.

7,795 citations

Journal ArticleDOI
TL;DR: A review of the intergovernmental panel on climate change report on global warming and the greenhouse effect can be found in this paper, where the authors present chemistry of greenhouse gases and mathematical modelling of the climate system.
Abstract: Book review of the intergovernmental panel on climate change report on global warming and the greenhouse effect. Covers the scientific basis for knowledge of the future climate. Presents chemistry of greenhouse gases and mathematical modelling of the climate system. The book is primarily for government policy makers.

3,456 citations

Journal ArticleDOI
TL;DR: Data is needed on the threshold levels for reef orgarusms and for the reef ecosystem as a whole the levels above which sedimentation has lethal effects for particular species and above which normal functioning of the reef ceases.
Abstract: Unprecedented development along tropical shorelines is causing severe degradation of coral reefs primarily from increases in sedimentation. Sediment particles smother reef organisms and reduce light available for photosynthesis. Excessive sedmentation can adversely affect the structure and function of the coral reef ecosystem by altering both physical and biological processes. Mean sediment rates and suspended sediment concentrations for reefs not subject to stresses from human activities are < 1 to ca 10 mg cm-* d-' and < 10 mg I-', respectively. Chronic rates and concentrations above these values are 'hlgh'. Heavy sedmentation is associated with fewer coral species, less live coral, lower coral growth rates, greater abundance of branching forms, reduced coral recruitment, decreased calcification, decreased net productivity of corals, and slower rates of reef accretion. Coral species have different capabilities of clearing themselves of sediment particles or surviving lower light levels. Sedlment rejection is a function of morphology, orientation, growth habit, and behavior; and of the amount and type of se lment . Coral growth rates are not simple indicators of sediment levels. Decline of tropical fisheries is partially attributable to deterioration of coral reefs, seagrass beds, and mangroves from sedimentation. Sedimentation can alter the complex interactions between fish and their reef habitat. For example, sedimentation can lull major reef-building corals, leading to eventual collapse of the reef framework. A decline in the amount of shelter the reef provides leads to reductions in both number of individuals and number of species of fish. Currently, we are unable to rigorously predict the responses of coral reefs and reef organisms to excessive sedimentation from coastal development and other sources. Given information on the amount of sediment which will be introduced into the reef environment, the coral community composition, the depth of the reef, the percent coral cover, and the current patterns, we should be able to predict the consequences of a particular activity. Models of physical processes (e.g. sediment transport) must be complemented with better understanding of organism and ecosystem responses to sediment stress. Specifically, we need data on the threshold levels for reef orgarusms and for the reef ecosystem as a whole the levels above which sedimentation has lethal effects for particular species and above which normal functioning of the reef ceases. Additional field studies on the responses of reef organisms to both temgenous and calcium carbonate sediments are necessary. To effectively assess trends on coral reefs, e.g. changes in abundance and spatial arrangement of dominant benthic organisms, scientists must start using standardized monitoring methods. Long-term data sets are critical for tracking these complex ecosystems.

1,329 citations


"Coral reef bleaching: ecological pe..." refers background in this paper

  • ...The ratio of benthic algae/live coral cover has increased on some coral reefs for reasons apparently unrelated to bleaching, such as increased sedimentation (Cortes and Risk 1984; Rogers 1990), eutrophication...

    [...]

Book
01 Jan 1990
TL;DR: The Southern Oscillation (Variability of the Tropical Atmosphere). Oceanic Variability in the Tropics as mentioned in this paper is a well-known phenomenon in meteorological models of tropical weather.
Abstract: The Southern Oscillation (Variability of the Tropical Atmosphere). Oceanic Variability in the Tropics. Oceanic Adjustment. I. Oceanic Adjustment. II. Models of Tropical Atmosphere. Interactions between the Ocean and Atmosphere. Bibliograpy.

1,291 citations

Journal Article

1,063 citations


"Coral reef bleaching: ecological pe..." refers background in this paper

  • ...For similar reasons, the extensive asexual reproduction and cloning common in corals (Harrison and Wallace 1990) probably does not act to reduce genetic variation of the population as a whole, and hence prevent rapid evolutionary responses via new recombinations of genes, except in special cases where asex-...

    [...]