scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Correlating equations for natural convection heat transfer between horizontal circular cylinders

01 Oct 1976-International Journal of Heat and Mass Transfer (Pergamon)-Vol. 19, Iss: 10, pp 1127-1134
TL;DR: In this paper, a conduction boundary-layer model is used for heat transfer by conduction, laminar flow and turbulent flow. Butler et al. obtained a correlation for convection from a free horizontal cylinder as the outer cylinder diameter becomes infinite and for quasi-steady heat transfer to fluid within a horizontal cylinder.
About: This article is published in International Journal of Heat and Mass Transfer.The article was published on 1976-10-01. It has received 257 citations till now. The article focuses on the topics: Churchill–Bernstein equation & Heat transfer.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a detailed one dimensional numerical heat transfer analysis of a solar parabolic trough collector is performed, where the receiver and envelope are divided into several segments and mass and energy balance are applied in each segment.

291 citations


Additional excerpts

  • ...[24] recommend a correlation given by Kuehn and Goldstein [39]....

    [...]

  • ...The correlation for the convection part is written as [39]:...

    [...]

Journal ArticleDOI
TL;DR: In this paper, a semi-annulus enclosure filled with nanofluid is used for natural convection heat transfer in a control volume based finite element method (CVFEM).

237 citations

Journal ArticleDOI
TL;DR: In this article, the melting behavior of paraffin wax as a phase change material (PCM) encapsulated in a cylindrical capsule, used in a latent heat thermal energy storage system with a solar water heating collector, is analyzed.

170 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized the important published works on nanofluid preparations, properties, experimental and numerical heat transfer behaviors, and two main categories were discussed in detail.

148 citations

Journal ArticleDOI
TL;DR: In this article, a cylindrical cavity-receiver containing a tubular ceramic absorber is considered for performing thermochemical processes using concentrated solar radiation as the energy source of high-temperature process heat.

117 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a simple empirical expression for the mean value of Nu over the cylinder for all Ra and all Pr is developed in terms of the model of Churchill and Usagi.

1,162 citations

Journal ArticleDOI
TL;DR: The expression Y = (1 + Zn)1/n where Y and Z are expressed in terms of the solutions for asymptotically large and small values of the independent variable is shown to be remarkably successful in correlating rates of transfer for processes which vary uniformly between these limiting cases as discussed by the authors.
Abstract: The expression Y = (1 + Zn)1/n where Y and Z are expressed in terms of the solutions for asymptotically large and small values of the independent variable is shown to be remarkably successful in correlating rates of transfer for processes which vary uniformly between these limiting cases. The arbitrary exponent n can be evaluated simply from plots of Y versus Z and Y/Z versus 1/Z. The expression is quite insensitive to the choice of n and the closest integral value can be chosen for simplicity. The process of correlation can be repeated for additional variables in series. Illustrative applications are presented only for flow, conduction, forced convection, and free convection, but the expression and procedure are applicable to any phenomenon which varies uniformly between known, limiting solutions.

784 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental and theoretical-numerical investigation has been carried out to extend existing knowledge of velocity and temperature distributions and local heat-transfer coefficients for naturel convection within a horizontal annulus.
Abstract: An experimental and theoretical-numerical investigation has been carried out to extend existing knowledge of velocity and temperature distributions and local heat-transfer coefficients for naturel convection within a horizontal annulus. A Mach—Zehnder interferometer was used to determine temperature distributions and local heat-transfer coefficients experimentally. Results were obtained using water and air at atmospheric pressure with a ratio of gap width to inner-cylinder diameter of 0·8. The Rayleigh number based on the gap width varied from 2·11 × 104to 9·76 × 105. A finite-difference method was used to solve the governing constant-property equations numerically. The Rayleigh number was changed from 102 to 105 with the influence of Prandtl number and diameter ratio obtained near a Rayleigh number of 104. Comparisons between the present experimental and numerical results under similar conditions show good agreement.

716 citations

Book ChapterDOI
TL;DR: In this paper, the authors focus on determining equations for the local and mean rate of laminar heat transfer, which are approximately valid for different geometries by use of these equations, several new correlations are obtained for various heat transfer problems, and the results compared with experiments.
Abstract: Publisher Summary The first part of the chapter focuses on determining equations for the local and mean rate of laminar heat transfer, which are approximately valid for different geometries By use of these equations, several new correlations are obtained for various laminar heat transfer problems, and the results compared with experiments The problems considered involve heat transfer (1) from a cylinder, (2) from a sphere, (3) between concentric cylinders, (4) between concentric and eccentric spheres, (5) between vertical plates, and (6) from a nonisothermal vertical plate Attention is then turned to turbulent free convection heat transfer where the heat transfer from inclined plates and between differentially heated plates is considered A method of solving problems involving both laminar and turbulent convection is then outlined The criterion developed for the regions of applicability of the laminar and turbulent equations is shown to accurately predict the experimentally determined onset of instability of the laminar flow for free convection from an isolated plate A recommendation is then made for correlating heat transfer results in a clearer and more convenient way

302 citations

Journal ArticleDOI
TL;DR: In this paper, the problem of describing free convection near either horizontal cylinders or vertical axisymmetric bodies with fairly arbitrary body contours is studied and the solutions of two coupled, coupled, partial differential equations, for the temperature and stream functions, are represented by series which are universal with respect to body shapes within a specified class of body shapes.
Abstract: In this article the problem of describing free convection near either horizontal cylinders or vertical axisymmetric bodies with fairly arbitrary body contours is studied. The solutions of two, coupled, partial differential equations, for the temperature and stream functions, are represented by series which are universal with respect to body contours within a specified class of body shapes (e.g. round-nosed cylinders). The series appear to converge rapidly so that a minimum of computational effort is required, even for classes of body shapes which do not admit the usual similarity transformations. For either horizontal, circular cylinders or spheres the series converge faster than expansions of the Blasius type and one-term approximations compare favourably with some of the existing experimental data.

91 citations