scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Correlating magnetic structure and magnetotransport in semimetal thin films of Eu 1 − x Sm x TiO 3

TL;DR: In this paper, the average and depth-dependent magnetic order in thin-film samples of biaxially stressed and electron-doped EuTiO3 for samples across a doping range < 0.1 to 7.8 × 1020 cm-3.
Abstract: We report on the evolution of the average and depth-dependent magnetic order in thin-film samples of biaxially stressed and electron-doped EuTiO3 for samples across a doping range < 0.1 to 7.8 × 1020 cm-3. Under an applied in-plane magnetic field, the G-type antiferromagnetic ground state undergoes a continuous spin-flop phase transition into in-plane, field-polarized ferromagnetism. The critical field for ferromagnetism slightly decreases with an increasing number of free carriers, yet the field evolution of the spin-flop transition is qualitatively similar across the doping range. Unexpectedly, we observe interfacial ferromagnetism with saturated Eu2+ moments at the substrate interface at low fields preceding ferromagnetic saturation throughout the bulk of the degenerate semiconductor film. We discuss the implications of these findings for the unusual magnetotransport properties of this compound.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the superconducting transition temperature decreases systematically as the SrTiO3 film thickness is reduced, which is likely due to proximity effects, and the authors also investigate the properties of EuTiOO3 capping layers and show that they can prevent surface depletion and allow for conducting heterostructures with SIs as thin as 10 nm.
Abstract: Doped SrTiO3 thin films are of significant scientific interest for their superconducting, ferroelectric, and thermoelectric properties. Air-exposed thin films of doped SrTiO3 suffer from surface carrier depletion that makes it difficult to obtain thin, conducting films, especially at low doping densities and temperatures. Here, we show that thin (10 nm) EuTiO3 capping layers can prevent surface depletion and allow for conducting heterostructures with SrTiO3 films as thin as 10 nm. We also investigate the superconducting properties of EuTiO3 capped SrTiO3 films. We show that the superconducting transition temperature decreases systematically as the SrTiO3 film thickness is reduced, which is likely due to proximity effects.

5 citations

Journal ArticleDOI
TL;DR: In this paper , the anomalous Hall effect was observed in a reduced KTaO3 and showed an extrinsic to intrinsic crossover, suggesting that the localized magnetic moments of the oxygen vacancies scatter conduction electrons asymmetrically and give rise to anomalous hall effect.
Abstract: The anomalous Hall effect, a hallmark of broken time-reversal symmetry and spin–orbit coupling, is frequently observed in magnetically polarized systems. However, its realization in nominally non-magnetic systems remains elusive. Here, we report on the observation of the anomalous Hall effect in nominally non-magnetic KTaO3. Anomalous Hall effect emerges in reduced KTaO3 and shows an extrinsic to intrinsic crossover. A paramagnetic behavior is observed in reduced samples and confirmed using first principles calculations. The observed anomalous Hall effect follows the oxygen vacancy-induced magnetization response, suggesting that the localized magnetic moments of the oxygen vacancies scatter conduction electrons asymmetrically and give rise to the anomalous Hall effect. The anomalous Hall conductivity is found to be insensitive to the scattering rate in the low temperature limit (T < 5 K), implying that the Berry curvature of the electrons on the Fermi surface controls the anomalous Hall effect. Our observations provide a detailed picture of many-body interactions, which trigger the anomalous Hall effect in a non-magnetic system.

3 citations

Posted Content
TL;DR: In this article, the anomalous Hall effect was observed in a non-magnetic KTaO3 and showed an extrinsic to intrinsic crossover, suggesting that the localized magnetic moments of the oxygen vacancies scatter conduction electrons asymmetrically.
Abstract: The anomalous Hall effect, a hallmark of broken time-reversal symmetry and spin-orbit coupling, is frequently observed in magnetically polarized systems. Its realization in non-magnetic systems, however, remains elusive. Here, we report on the observation of anomalous Hall effect in nominally non-magnetic KTaO3. Anomalous Hall effect emerges in reduced KTaO3 and shows an extrinsic to intrinsic crossover. A paramagnetic behavior is observed in reduced samples using first principles calculations and quantitative magnetometry. The observed anomalous Hall effect follows the oxygen vacancy-induced magnetization response, suggesting that the localized magnetic moments of the oxygen vacancies scatter conduction electrons asymmetrically and give rise to anomalous Hall effect. The anomalous Hall conductivity becomes insensitive to scattering rate in the low temperature limit (T<5 K), implying that the Berry curvature of the electrons on the Fermi surface controls the anomalous Hall effect. Our observations describe a detailed picture of many-body interactions, triggering anomalous Hall effect in a non-magnetic system.

1 citations

Journal ArticleDOI
TL;DR: In this article , the authors examined the physical properties of high quality ETO films with La3+ (4 f0) or Gd3+(4 f7) donors (ELTO or EGTO) grown on nearly lattice matched SrTiO3 substrates with a gas source molecular beam epitaxy.
Abstract: EuTiO3 (ETO) is a unique magnetic semiconductor with a large localized magnetic moment of Eu2+ (4 f 7). By the doping of high-mobility electrons in the Ti 3 d conduction band, peculiar magnetotransport properties such as the unconventional anomalous Hall effect (AHE) due to Berry curvature in momentum space, as well as the Shubnikov–de Haas oscillations of spin polarized electrons, have been observed. In this study, we have examined the physical properties of high quality ETO films with La3+ (4 f0) or Gd3+ (4 f7) donors (ELTO or EGTO) grown on nearly lattice matched SrTiO3 substrates with a gas source molecular beam epitaxy. We find that the anti-ferromagnetic ordering of ELTO is destabilized by the vacancy of the magnetic moment on the La-site for ELTO. The maximum electron mobility for ELTO (<3200 cm2 V−1 s−1) is larger than that of EGTO (<1500 cm2 V−1 s−1), keeping the metallic state at very diluted doping. The AHE changes its sign with shifting the Fermi level position across the Weyl nodes, as seen previously for compressively strained ELTO films, but the critical electron density is much lower, which can be explained by the absence of additional crystal-field splitting in the lattice matched system. These unveiled transport properties provide deeper understanding of the transport phenomena related to the topology of the band structure in high-mobility, magnetic oxide semiconductors.
References
More filters
Journal ArticleDOI
TL;DR: Weyl and Dirac semimetals as discussed by the authors are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry, and they have generated much recent interest.
Abstract: Weyl and Dirac semimetals are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry. As three-dimensional analogs of graphene, they have generated much recent interest. Deep connections exist with particle physics models of relativistic chiral fermions, and, despite their gaplessness, to solid-state topological and Chern insulators. Their characteristic electronic properties lead to protected surface states and novel responses to applied electric and magnetic fields. The theoretical foundations of these phases, their proposed realizations in solid-state systems, and recent experiments on candidate materials as well as their relation to other states of matter are reviewed.

3,407 citations

Journal ArticleDOI
TL;DR: Weyl fermions possess exotic properties and can act like magnetic monopoles as discussed by the authors, and TaAs is a Weyl semimetal, demonstrating for the first time that Weyl semi-metals can be identified experimentally.
Abstract: Weyl fermions possess exotic properties and can act like magnetic monopoles. Researchers show that TaAs is a Weyl semimetal, demonstrating for the first time that Weyl semimetals can be identified experimentally.

1,615 citations

Journal ArticleDOI
TL;DR: The results show that in the TaAs-type materials the WeylSemimetal state does not depend on fine-tuning of chemical composition or magnetic order, which opens the door for the experimental realization of Weyl semimetals and Fermi arc surface states in real materials.
Abstract: Weyl fermions are massless chiral fermions that play an important role in quantum field theory but have never been observed as fundamental particles. A Weyl semimetal is an unusual crystal that hosts Weyl fermions as quasiparticle excitations and features Fermi arcs on its surface. Such a semimetal not only provides a condensed matter realization of the anomalies in quantum field theories but also demonstrates the topological classification beyond the gapped topological insulators. Here, we identify a topological Weyl semimetal state in the transition metal monopnictide materials class. Our first-principles calculations on TaAs reveal its bulk Weyl fermion cones and surface Fermi arcs. Our results show that in the TaAs-type materials the Weyl semimetal state does not depend on fine-tuning of chemical composition or magnetic order, which opens the door for the experimental realization of Weyl semimetals and Fermi arc surface states in real materials. Proposals for the realization of Weyl semimetals, topologically non-trivial materials which host Weyl fermion quasiparticles, have faced demanding experimental requirements. Here, the authors predict such a state in stoichiometric TaAs, arising due to the breaking of inversion symmetry.

1,375 citations

Journal ArticleDOI
TL;DR: The study shows that the combination of robust topological surface states and large room temperature carrier mobility, both of which originate from bulk Dirac bands of the Weyl semimetal, is a recipe for high activity HER catalysts.
Abstract: The search for highly efficient and low-cost catalysts is one of the main driving forces in catalytic chemistry. Current strategies for the catalyst design focus on increasing the number and activity of local catalytic sites, such as the edge sites of molybdenum disulfides in the hydrogen evolution reaction (HER). Here, the study proposes and demonstrates a different principle that goes beyond local site optimization by utilizing topological electronic states to spur catalytic activity. For HER, excellent catalysts have been found among the transition-metal monopnictides-NbP, TaP, NbAs, and TaAs-which are recently discovered to be topological Weyl semimetals. Here the study shows that the combination of robust topological surface states and large room temperature carrier mobility, both of which originate from bulk Dirac bands of the Weyl semimetal, is a recipe for high activity HER catalysts. This approach has the potential to go beyond graphene based composite photocatalysts where graphene simply provides a high mobility medium without any active catalytic sites that have been found in these topological materials. Thus, the work provides a guiding principle for the discovery of novel catalysts from the emerging field of topological materials.

1,274 citations

Journal ArticleDOI
TL;DR: This work reports a distinct additional contribution to the Hall effect in the temperature and magnetic field range of the proposed Skyrmion lattice, where such a contribution is neither seen nor expected for a normal helical state.
Abstract: Recent small angle neutron scattering suggests that the spin structure in the A phase of MnSi is a so-called triple-Q state, i.e., a superposition of three helices under 120 degrees. Model calculations indicate that this structure in fact is a lattice of so-called Skyrmions, i.e., a lattice of topologically stable knots in the spin structure. We report a distinct additional contribution to the Hall effect in the temperature and magnetic field range of the proposed Skyrmion lattice, where such a contribution is neither seen nor expected for a normal helical state. Our Hall effect measurements constitute a direct observation of a topologically quantized Berry phase that identifies the spin structure seen in neutron scattering as the proposed Skyrmion lattice.

1,255 citations

Related Papers (5)