scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Correlating spectral and timing properties in the evolving jet of the microblazar MAXI J1836-194

TL;DR: In this article, the authors explore the disc-jet connection by modeling the multi-wavelength emission of MAXI J1836-194 during its 2011 outburst and find that the properties of the X-ray power spectrum are correlated with the jet properties, suggesting that an underlying physical process regulates both.
Abstract: During outbursts, the observational properties of black hole X-ray binaries vary on time-scales of days to months. These relatively short time-scales make these systems ideal laboratories to probe the coupling between accreting material and outflowing jets as the accretion rate varies. In particular, the origin of the hard X-ray emission is poorly understood and highly debated. This spectral component, which has a power-law shape, is due to Comptonization of photons near the black hole, but it is unclear whether it originates in the accretion flow itself, or at the base of the jet, or possibly the interface region between them. In this paper, we explore the disc-jet connection by modelling the multiwavelength emission of MAXI J1836-194 during its 2011 outburst. We combine radio through X-ray spectra, X-ray timing information, and a robust joint-fitting method to better isolate the jet's physical properties. Our results demonstrate that the jet base can produce power-law hard X-ray emission in this system/outburst, provided that its base is fairly compact and that the temperatures of the emitting electrons are subrelativistic. Because of energetic considerations, our model favours mildly pair-loaded jets carrying at least 20 pairs per proton. Finally, we find that the properties of the X-ray power spectrum are correlated with the jet properties, suggesting that an underlying physical process regulates both.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a very long-baseline interferometry (VLBI) image of the Centaurus A nucleus was obtained with the Event Horizon Telescope at 228 GHz, which revealed a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet.
Abstract: Very-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10–100 gravitational radii (rg ≡ GM/c2) scales in nearby sources1. Centaurus A is the closest radio-loud source to Earth2. It bridges the gap in mass and accretion rate between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43° has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thus far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations3, we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We reveal a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500 rg scales remarkably well. Furthermore, we identify the location of Centaurus A’s SMBH with respect to its resolved jet core at a wavelength of 1.3 mm and conclude that the source’s event horizon shadow4 should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses5,6. The millimetre image of the Centaurus A nucleus by the Event Horizon Telescope reveals a highly collimated, asymmetrically edge-brightened jet. The source’s event horizon shadow should be visible at terahertz frequencies, consistent with the universal scale invariance of black holes.

37 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed 5 epochs of NICER data of the black hole X-ray binary MAXI J1820+070 during the bright hard-to-soft state transition in its 2018 outburst with both reflection spectroscopy and Fourier-resolved timing analysis.
Abstract: We analyze 5 epochs of NICER data of the black hole X-ray binary MAXI J1820+070 during the bright hard-to-soft state transition in its 2018 outburst with both reflection spectroscopy and Fourier-resolved timing analysis. We confirm the previous discovery of reverberation lags in the hard state, and find that the frequency range where the (soft) reverberation lag dominates decreases with the reverberation lag amplitude increasing during the transition, suggesting an increasing X-ray emitting region, possibly due to an expanding corona. By jointly fitting the lag-energy spectra in a number of broad frequency ranges with the reverberation model reltrans, we find the increase in reverberation lag is best described by an increase in the X-ray coronal height. This result, along with the finding that the corona contracts in the hard state, suggests a close relationship between spatial extent of the X-ray corona and the radio jet. We find the corona expansion (as probed by reverberation) precedes a radio flare by ~5 days, which may suggest that the hard-to-soft transition is marked by the corona expanding vertically and launching a jet knot that propagates along the jet stream at relativistic velocities.

35 citations

Journal ArticleDOI
TL;DR: In this paper , the authors performed a systematic search of all NICER archival observations of black hole low-mass X-ray binaries for signatures of reverberation and found that reverberation lags become longer and dominate at lower Fourier frequencies during the hard-to-soft state transition.
Abstract: We perform the first systematic search of all NICER archival observations of black hole (and candidate) low-mass X-ray binaries for signatures of reverberation. Reverberation lags result from the light travel time difference between the direct coronal emission and the reflected disk component, and therefore their properties are a useful probe of the disk-corona geometry. We detect new signatures of reverberation lags in eight sources, increasing the total sample from three to 11, and study the evolution of reverberation lag properties as the sources evolve in outbursts. We find that in all of the nine sources with more than one reverberation lag detection, the reverberation lags become longer and dominate at lower Fourier frequencies during the hard-to-soft state transition. This result shows that the evolution in reverberation lags is a global property of the state transitions of black hole low-mass X-ray binaries, which is valuable in constraining models of such state transitions. The reverberation lag evolution suggests that the corona is the base of a jet that vertically expands and/or gets ejected during state transition. We also discover that in the hard state, the reverberation lags get shorter, just as the quasiperiodic oscillations (QPOs) move to higher frequencies, but then in the state transition, while the QPOs continue to higher frequencies, the lags get longer. We discuss the implications of the coronal geometry and physical models of QPOs in light of this new finding.

12 citations

Journal ArticleDOI
TL;DR: In this paper , the authors studied the jet in the hard state of the accreting black-hole binary MAXI J1820+070 and derived the jet Lorentz factor from the available radio-to-optical spectral and variability data.
Abstract: We study the jet in the hard state of the accreting black-hole binary MAXI J1820+070. From the available radio-to-optical spectral and variability data, we put strong constraints on the jet parameters. We find while it is not possible to uniquely determine the jet Lorentz factor from the spectral and variability properties alone, we can estimate the jet opening angle ($\approx 1.5\pm1^\circ$), the distance at which the jet starts emitting synchrotron radiation ($\sim 3 \times10^{10}$cm), and the magnetic field strength there ($\sim$10$^4$G), with relatively low uncertainty, as they depend weakly on the bulk Lorentz factor. We find the breaks in the variability power spectra from radio to sub-mm are consistent with variability damping over the time scale equal to the travel time along the jet at any Lorentz factor. This factor can still be constrained by the electron-positron pair production rate within the jet base, which we calculate based on the observed X-ray/soft gamma-ray spectrum, and the jet power, required to be less than the accretion power. The minimum ($\sim$1.5) and maximum ($\sim$4.5) Lorentz factors correspond to the dominance of pairs and ions, and the minimum and maximum jet power, respectively. We estimate the magnetic flux threading the black hole and find the jet can be powered by the Blandford-Znajek mechanism in a magnetically-arrested flow accretion flow. We point out the similarity of our derived formalism to that of core shifts, observed in extragalactic radio sources.

10 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the scientific literature based on the INTEGRAL data, which has significantly advanced our knowledge in the field of relativistic astrophysics.
Abstract: INTEGRAL is an ESA mission in fundamental astrophysics that was launched in October 2002. It has been in orbit for over 18 years, during which it has been observing the high-energy sky with a set of instruments specifically designed to probe the emission from hard X-ray and soft gamma-ray sources. This paper is devoted to the subject of black hole binaries, which are among the most important sources that populate the high-energy sky. We present a review of the scientific literature based on INTEGRAL data, which has significantly advanced our knowledge in the field of relativistic astrophysics. We briefly summarise the state-of-the-art of the study of black hole binaries, with a particular focus on the topics closer to the INTEGRAL science. We then give an overview of the results obtained by INTEGRAL and by other observatories on a number of sources of importance in the field. Finally, we review the main results obtained over the past 18 years on all the black hole binaries that INTEGRAL has observed. We conclude with a summary of the main contributions of INTEGRAL to the field, and on the future perspectives.

7 citations

References
More filters
Journal ArticleDOI
TL;DR: The emcee algorithm as mentioned in this paper is a Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010).
Abstract: We introduce a stable, well tested Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has already been used in several published projects in the astrophysics literature. The algorithm behind emcee has several advantages over traditional MCMC sampling methods and it has excellent performance as measured by the autocorrelation time (or function calls per independent sample). One major advantage of the algorithm is that it requires hand-tuning of only 1 or 2 parameters compared to ~N2 for a traditional algorithm in an N-dimensional parameter space. In this document, we describe the algorithm and the details of our implementation. Exploiting the parallelism of the ensemble method, emcee permits any user to take advantage of multiple CPU cores without extra effort. The code is available online at http://dan.iel.fm/emcee under the GNU General Public License v2.

8,805 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider viscous rotating accretion flows in which most of the viscously dissipated energy is stored as entropy rather than being radiated, and obtain a family of self-similar solutions where the temperature of the accreting gas is nearly virial and the flow is quasi-spherical.
Abstract: We consider viscous rotating accretion flows in which most of the viscously dissipated energy is stored as entropy rather than being radiated. Such advection-dominated flows may occur when the optical depth is either very small or very large. We obtain a family of self-similar solutions where the temperature of the accreting gas is nearly virial and the flow is quasi-spherical. The gas rotates at much less than the Keplerian angular velocity; therefore, the central stars in such flows will cease to spin up long before they reach the break-up limit. Further, the Bernoulli parameter is positive, implying that advection-dominated flows are susceptible to producing outflows. Convection is likely in many of these flows and, if present, will tend to enhance the above effects. We suggest that advection-dominated accretion may provide an explanation for the slow spin rates of accreting stars and the widespread occurrence of outflows and jets in accreting systems.

2,228 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the properties and behavior of 20 X-ray binaries that contain a dynamically confirmed black hole, 17 of which are transient systems, during the past decade, many of these transien...
Abstract: We review the properties and behavior of 20 X-ray binaries that contain a dynamically-confirmed black hole, 17 of which are transient systems. During the past decade, many of these transien...

2,174 citations

Journal ArticleDOI
TL;DR: In this article, the relativistic motion of a quasi-steady jet is modeled as a superluminal expansion in which the moving component and the stationary component would have comparable Doppler-boosted fluxes, and specific models for the dynamical and radiative properties of the jet and individual shocks are presented.
Abstract: Variable extragalactic radio sources, associated with the nuclei of galaxies and quasars, are interpreted in terms of a supersonic relativistic jet. It is proposed that radio emission originates both from the quasi-steady jet itself and from behind strong shock waves which either propagate in the jet, or which are formed behind dense condensations (clouds) that are accelerated to relativistic speeds by the flow. In this way the source could display apparent superluminal expansion in which the moving component (associated with a shock) and the stationary component (associated with the optically-thick core of the jet) would have comparable, Doppler-boosted fluxes. Specific models for the dynamical and radiative properties of the jet and of individual shocks are presented. Kinematical consequences of the relativistic motion are described for flux and polarization measurements, as well as for VLBI observations of superluminal sources. It is argued that the majority of bright compact sources are observed along lines of sight making small (< or approx. =10/sup 0/) angles to the jet velocity. This hypothesis has important consequences for the interpretation of low-frequency variable sources, optically-violent variable quasars, Lacertids, and extended double sources. These are briefly outlined, and some specific observational tests are proposed.

1,908 citations

Related Papers (5)