scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Correlation Structure of Time-Changed Lévy Processes

TL;DR: In this article, the correlation function for time-changed L evy processes has been studied in the context of continuous time random walks, where the second-order correlation function of a continuous-time random walk is defined.
Abstract: Time-changed L evy processes include the fractional Poisson process, and the scaling limit of a continuous time random walk. They are obtained by replacing the deterministic time variable by a positive non-decreasing random process. The use of time-changed processes in modeling often requires the knowledge of their second order properties such as the correlation function. This paper provides the explicit expression for the correlation function for time-changed L evy processes. The processes used to model random time include subordinators and inverse subordinators, and the time-changed L evy processes include limits of continuous time random walks. Several examples useful in applications are discussed.

Content maybe subject to copyright    Report

Citations
More filters
28 Aug 2011
TL;DR: In this paper, it was shown that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional poisson process with Mittag-Leffler waiting times.
Abstract: The fractional Poisson process is a renewal process with Mittag-Leffler waiting times. Its distributions solve a time-fractional analogue of the Kolmogorov forward equation for a Poisson process. This paper shows that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional Poisson process. This result unifies the two main approaches in the stochastic theory of time-fractional diffusion equations. The equivalence extends to a broad class of renewal processes that include models for tempered fractional diffusion, and distributed-order (e.g., ultraslow) fractional diffusion. The paper also {discusses the relation between} the fractional Poisson process and Brownian time.

50 citations

Journal ArticleDOI
TL;DR: In this paper, the authors define fractional Skellam processes via the time changes in Poisson and Skekam processes by an inverse of a standard stable subordinator.
Abstract: The recent literature on high frequency financial data includes models that use the difference of two Poisson processes, and incorporate a Skellam distribution for forward prices. The exponential distribution of inter-arrival times in these models is not always supported by data. Fractional generalization of Poisson process, or fractional Poisson process, overcomes this limitation and has Mittag-Leffler distribution of inter-arrival times. This paper defines fractional Skellam processes via the time changes in Poisson and Skellam processes by an inverse of a standard stable subordinator. An application to high frequency financial data set is provided to illustrate the advantages of models based on fractional Skellam processes.

47 citations


Cites background from "Correlation Structure of Time-Chang..."

  • ...From [19], the covariance function of the fractional Poisson process is...

    [...]

Journal ArticleDOI
TL;DR: In this article, a non-homogeneous fractional Poisson process of renewal was introduced, which replaces the time variable in the fractional poisson process with an appropriate function of time.

43 citations

Journal ArticleDOI
TL;DR: In this article, the short-range dependence (SRD) property of the increments of the fractional Poisson process was discussed, and it was shown that fractional negative binomial process (FNBP) has the same property.
Abstract: We discuss the short-range dependence (SRD) property of the increments of the fractional Poisson process, called the fractional Poissonian noise. We also establish that the fractional negative binomial process (FNBP) has the long-range dependence (LRD) property, while the increments of the FNBP have the SRD property. Our definitions of the SRD/LRD properties are similar to those for a stationary process and different from those recently used in Biard and Saussereau (2014).

35 citations

Journal ArticleDOI
TL;DR: In this paper, a martingale characterization for the Fractional Poisson process on the plane is given, and the authors extend this result to Fractionally Poisson fields, obtaining some other characterizations.
Abstract: We present new properties for the Fractional Poisson process and the Fractional Poisson field on the plane. A martingale characterization for Fractional Poisson processes is given. We extend this result to Fractional Poisson fields, obtaining some other characterizations. The fractional differential equations are studied. We consider a more general Mixed-Fractional Poisson process and show that this process is the stochastic solution of a system of fractional differential-difference equations. Finally, we give some simulations of the Fractional Poisson field on the plane.

32 citations


Cites background from "Correlation Structure of Time-Chang..."

  • ...3), and [28] showed that Cov(Nα(t), Nα(s)) = λ(min(t, s))α Γ(1 + α) + λ(2)Cov(Yα(t), Yα(s)), (2....

    [...]

  • ...This subsection collects some results from the theory of inverse subordinators, see [49, 50, 36, 5, 28]....

    [...]

References
More filters
Book
01 Jan 1999

15,898 citations

01 Jan 1950
TL;DR: A First Course in Probability (8th ed.) by S. Ross is a lively text that covers the basic ideas of probability theory including those needed in statistics.
Abstract: Office hours: MWF, immediately after class or early afternoon (time TBA). We will cover the mathematical foundations of probability theory. The basic terminology and concepts of probability theory include: random experiments, sample or outcome spaces (discrete and continuous case), events and their algebra, probability measures, conditional probability A First Course in Probability (8th ed.) by S. Ross. This is a lively text that covers the basic ideas of probability theory including those needed in statistics. Theoretical concepts are introduced via interesting concrete examples. In 394 I will begin my lectures with the basics of probability theory in Chapter 2. However, your first assignment is to review Chapter 1, which treats elementary counting methods. They are used in applications in Chapter 2. I expect to cover Chapters 2-5 plus portions of 6 and 7. You are encouraged to read ahead. In lectures I will not be able to cover every topic and example in Ross, and conversely, I may cover some topics/examples in lectures that are not treated in Ross. You will be responsible for all material in my lectures, assigned reading, and homework, including supplementary handouts if any.

10,221 citations

Journal ArticleDOI
TL;DR: Fractional kinetic equations of the diffusion, diffusion-advection, and Fokker-Planck type are presented as a useful approach for the description of transport dynamics in complex systems which are governed by anomalous diffusion and non-exponential relaxation patterns.

7,412 citations


"Correlation Structure of Time-Chang..." refers methods in this paper

  • ...The CTRW is used as a model of anomalous diffusion in physics, finance, hydrology, and other fields [6, 7, 29, 36, 41]....

    [...]