scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Correlation Study Between Material Parameters and Mechanical Properties of Iron–Carbon Compacts Using Sensitivity Analysis and Regression Model

08 May 2019-Metals and Materials International (The Korean Institute of Metals and Materials)-Vol. 25, Iss: 5, pp 1258-1271
TL;DR: In this paper, the authors investigated the influences of three typical material parameters, iron particle size, graphite addition, and powder lubricant addition, on the density and mechanical properties of an iron-carbon alloy formed via powder compaction and sintering.
Abstract: Changing the material parameters such as powder characteristics and additives affects the final properties of an iron–carbon alloy. This study investigated the influences of three typical material parameters, iron particle size, graphite addition, and powder lubricant addition, on the density and mechanical properties of an iron–carbon alloy formed via powder compaction and sintering. Each material parameter was designed with five levels, and all of the powder mixtures were compacted under 500 MPa and sintered at 1120 °C for 30 min. The microstructure of the samples was observed for the green part and sintered part. Through the tensile test, yield strength, ultimate tensile strength, and elongation were measured. The tensile fracture surface was also examined to understand the changes in mechanical properties according to the parameters. The correlations between mechanical properties and material parameters were characterized by the mapping functions, and a sensitivity analysis was carried out to investigate which parameter had the larger influence on the mechanical properties. The results showed that graphite addition has the greatest influence on the mechanical properties due to the microstructural changes from hypoeutectoid structure to hypereutectoid structure. Further, a regression model was developed to describe the mechanical response of the iron–carbon alloy depending on the material conditions.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, two kinds of lattice structures, pyramidal and tetrahedral, were designed and fabricated via a selective laser melting (SLM) process using stainless steel 316L powder.
Abstract: Lattice structures are multi-functional materials with various advantages such as high specific stiffness, high energy absorption capacity and good thermal management capability. Recently, the development of manufacturing technologies using metal powders has facilitated fabrication of complex products; consequently, interest in lattice structures has grown. In this work, two kinds of lattice structures, pyramidal and tetrahedral, were designed and fabricated via a selective laser melting (SLM) process using stainless steel 316L powder. Scanning electron microscope (SEM) and optical microscope (OM) results revealed that lattice structures with various unit cell sizes and angles of inclination can be manufactured using SLM without the need for additional support structures. However, many unmelted and partially melted particles were observed on the surface of the lattice structures, which caused dimensional errors related to the struts. This research examined the effects of topology and unit cell design parameters on the macroscopic compressive behavior of lattice structures. Compressive characteristics, including elastic modulus, initial peak stress, strain energy absorption and mean stress, were evaluated through uniaxial compression tests. Lattice structures with the same relative density exhibited excellent elastic modulus, initial peak stress, energy absorption and mean stress results at inclination angles of 45–50°. These characteristics showed a tendency to increase with increasing relative density at the same inclination angle. The experimental results suggested these design parameters are the main factors influencing the mechanical characteristics of lattice structures. (Received November 18, 2019; Accepted February 4, 2020)

1 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of sintering temperature and the amount of Fe-17 at %P addition were studied for the Fe-Si-P sintered alloys.

1 citations

Journal ArticleDOI
TL;DR: In this article, a thermal and microstructural analysis was carried out to characterize the property of inner hemisphere for safe thermal couple embedding into SUS316L by hemisphere design to avoid direct laser exposure onto sensors during selective laser melting process.
Abstract: Artificial intelligence and Internet of Things (IoT) technology, which are the core of the 4th industrial revolution, can resolve many problems that optimization of production times in the manufacturing process and reduction of materials required etc. In order to utilize the 4th industrial revolution technology, real-time monitoring technology of metal parts is essential, so technology for embedding sensors and IC chips into parts is essential. Using metal 3d printing technology, it is possible to embed IC chips into metal parts, which was impossible because of the existing high-temperature metal manufacturing process of casting or forging. Here we introduce a novel new method for sensor embedding into SUS316L by hemisphere design to avoid direct laser exposure onto sensors during selective laser melting process. Thermal and microstructural analysis was carried out to characterize the property of inner hemisphere for safe thermal couple embedding into SUS316L.

1 citations

References
More filters
Book
01 Jan 1985
TL;DR: In this paper, the International System of Units (SI) is used to measure the properties of materials and their properties in the context of materials science and engineering, including properties of metal alloys.
Abstract: List of Symbols.Introduction.Atomic Structure and Interatomic Bonding.The Structure of Crystalline Solids.Imperfections in Solids.Diffusion.Mechanical Properties of Metals.Dislocations and Strengthening Mechanisms.Failure.Phase Diagrams.Phase Transformations in Metals: Development of Microstructure and Alteration of Mechanical Properties.Thermal Processing of Metal Alloys.Metals Alloys.Structures and Properties of Ceramics.Applications and Processing of Ceramics.Polymer Structures.Characteristics, Applications, and Processing of Polymers.Composites.Corrosion and Degradation of Materials.Electrical Properties.Thermal Properties.Magnetic Properties.Optical Properties.Materials Selection and Design Considerations.Economic, Environmental, and Societal Issues in Materials Science and Engineering.Appendix A: The International System of Units (SI).Appendix B: Properties of Selected Engineering Materials.Appendix C: Costs and Relative Costs for Selected Engineering Materials.Appendix D: Mer Structures for Common Polymers.Appendix E: Glass Transition and Melting Temperatues for Common Polymeric Materials.Glossary.Answers to Selected Problems.Index.

6,674 citations

Journal ArticleDOI
TL;DR: In this article, the microstructure and mechanical properties of sintered Fe 0.85Mo-Ni steels were investigated as a function of their density and pore size, shape, and distribution.
Abstract: The microstructure and mechanical properties of sintered Fe–0.85Mo–Ni steels were investigated as a function of sintered density. A quantitative analysis of microstructure was correlated with tensile and fatigue behavior to understand the influence of pore size, shape, and distribution on mechanical behavior. Tensile strength, Young's modulus, strain-to-failure, and fatigue strength all increased with a decrease in porosity. The decrease in Young's modulus with increasing porosity was predicted by analytical modeling. Two-dimensional microstructure-based finite element modeling showed that the enhanced tensile and fatigue behavior of the denser steels could be attributed to smaller, more homogeneous, and more spherical porosity which resulted in more homogeneous deformation and decreased strain localization in the material. The implications of pore size, morphology, and distribution on the mechanical behavior and fracture of P/M steels are discussed.

296 citations

Journal ArticleDOI
TL;DR: In this article, sintering of iron powders with graphite, copper, graphite and boron is discussed, along with the mechanical properties of the sintered parts.

117 citations

Journal ArticleDOI
TL;DR: In this paper, the tensile strength, fatigue crack propagation behavior, and fracture toughness of a low-alloy sin tered steel were determined for the porosity range 11-17%.
Abstract: The tensile strength, fatigue crack propagation behaviour, and fracture toughness of a low-alloy sin tered steel were determined for the porosity range 11–17%. Static and cyclic strength were found to increase with density in a non-linear fashion. The pores both exerted a stress-concentrating influence and reduced the load-bearing section. The micromechanism of failure was always ductile fracture in the necks between sintered steel particles. It was concluded that the stress state at the tips of cracks subjected to static or cyclic loading was closer to plane stress than to plane strain. Retardation of fatigue crack propagation appeared to occur due to the blunting action of the pores. The presence of a wear mechanism had little influence upon fatigue crack growth rates. A companion paper (following) attempts to model the static and cyclic behaviour of the steel, based on the known micromechanisms of failure. PM/0172

94 citations

Journal ArticleDOI
TL;DR: In this article, Young's modulus, Poisson's ratio, and impact-resistance are also given as a function of density of the sintered compact and a knowledge of its value can be of assistance in choosing the correct composition.
Abstract: An unacceptable degree of scatter in the values obtained in tensile tests of sintered parts may occur if their elongation does not exceed a few percent. To ensure the required elongation, the composition of the material selected must correspond to that of alloys made by melting which exhibit a certain minimum elongation in the forged and annealed condition. This minimum is a function of the density of the sintered compact and a knowledge of its value can be of assistance in choosing the correct composition. Values of Young’s modulus, Poisson’s ratio, and impact-resistance are also given as a function of density.

93 citations