scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Counting processes with Bernštein intertimes and random jumps

01 Dec 2015-Journal of Applied Probability (Applied Probability Trust)-Vol. 52, Iss: 4, pp 1028-1044
TL;DR: In this paper, the authors considered point processes Nf(t), t > 0, with independent increments and integer-valued jumps whose distribution is expressed in terms of Bernstein functions f with Levy measure ν.
Abstract: In this paper we consider point processes Nf(t), t > 0, with independent increments and integer-valued jumps whose distribution is expressed in terms of Bernstein functions f with Levy measure ν. We obtain the general expression of the probability generating functions Gf of Nf, the equations governing the state probabilities pkf of Nf, and their corresponding explicit forms. We also give the distribution of the first-passage times Tkf of Nf, and the related governing equation. We study in detail the cases of the fractional Poisson process, the relativistic Poisson process, and the gamma-Poisson process whose state probabilities have the form of a negative binomial. The distribution of the times τjlj of jumps with height lj (∑j=1rlj = k) under the condition N(t) = k for all these special processes is investigated in detail.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , a stochastic model for the failure times of items subject to two external random shocks occurring as events in an underlying bivariate counting process is proposed, where the two kinds of shocks occur according to a bivariate space-fractional Poisson process.
Abstract: Abstract We propose a stochastic model for the failure times of items subject to two external random shocks occurring as events in an underlying bivariate counting process. This is a special formulation of the competing risks model, which is of interest in reliability theory and survival analysis. Specifically, we assume that a system, or an item, fails when the sum of the two types of shock reaches a critical random threshold. In detail, the two kinds of shock occur according to a bivariate space-fractional Poisson process, which is a two-dimensional vector of independent homogeneous Poisson processes time-changed by an independent stable subordinator. Various results are given, such as analytic hazard rates, failure densities, the probability that the failure occurs due to a specific type of shock, and the survival function. Some special cases and ageing notions related to the NBU characterization are also considered. In this way we generalize certain results in the literature, which can be recovered when the underlying process reduces to the homogeneous Poisson process.
Journal ArticleDOI
TL;DR: In this article, the authors obtained martingale characterizations for the generalized space fractional Poisson process (GSFPP) and for counting processes with Bernstein intertimes, which serve as extensions of the Watanabe's characterization for the classical homogenous Poisson processes.
Abstract: We obtain martingale characterizations for the generalized space fractional Poisson process (GSFPP) and for counting processes with Bernstein intertimes. These serve as extensions of the Watanabe's characterization for the classical homogenous Poisson process. The corresponding assertion for the space fractional Poisson process (SFPP) is obtained as a particular case of our results.
Journal ArticleDOI
TL;DR: In this article , the generalized fractional Skellam process (GFSP) is considered by time-changing it with an independent inverse stable subordinator, and it is observed that the GFSP is a Skellham type version of the generalized fractional counting process (GFCP), which is a fractional variant of the GCP.
Abstract: In this paper, we study a Skellam type variant of the generalized counting process (GCP), namely, the generalized Skellam process. Some of its distributional properties such as the probability mass function, probability generating function, mean, variance and covariance are obtained. Its fractional version, namely, the generalized fractional Skellam process (GFSP) is considered by time-changing it with an independent inverse stable subordinator. It is observed that the GFSP is a Skellam type version of the generalized fractional counting process (GFCP) which is a fractional variant of the GCP. It is shown that the one-dimensional distributions of the GFSP are not infinitely divisible. An integral representation for its state probabilities is obtained. We establish its long-range dependence property by using its variance and covariance structure. Also, we consider two time-changed versions of the GFCP. These are obtained by time-changing the GFCP by an independent Lévy subordinator and its inverse. Some particular cases of these time-changed processes are discussed by considering specific Lévy subordinators.
Posted Content
TL;DR: In this paper, the generalized fractional Skellam process (GFSP) is considered by time-changing it with an independent inverse stable subordinator, and its distributional properties such as the probability mass function, probability generating function, mean, variance and covariance are obtained.
Abstract: In this paper, we study a Skellam type variant of the generalized counting process (GCP), namely, the generalized Skellam process. Some of its distributional properties such as the probability mass function, probability generating function, mean, variance and covariance are obtained. Its fractional version, namely, the generalized fractional Skellam process (GFSP) is considered by time-changing it with an independent inverse stable subordinator. It is observed that the GFSP is a Skellam type version of the generalized fractional counting process (GFCP) which is a fractional variant of the GCP. It is shown that the one-dimensional distributions of the GFSP are not infinitely divisible. An integral representation for its state probabilities is obtained. We establish its long-range dependence property by using its variance and covariance structure. Also, we consider two time-changed versions of the GFCP. These are obtained by time-changing the GFCP by an independent Levy subordinator and its inverse. Some particular cases of these time-changed processes are discussed by considering specific Levy subordinators.
References
More filters
Book
01 Jan 2010
TL;DR: In this paper, the authors present a self-contained and unified approach to Bernstein functions and closely related function classes, bringing together old and establishing new connections, and an extensive list of complete Bernstein functions with their representations is provided.
Abstract: Bernstein functions appear in various fields of mathematics, e.g. probability theory, potential theory, operator theory, functional analysis and complex analysis- often with different definitions and under different names. Among the synonyms are `Laplace exponent' instead of Bernstein function, and complete Bernstein functions are sometimes called `Pick functions', `Nevanlinna functions' or `operator monotone functions'. This monograph- now in its second revised and extended edition- offers a self-contained and unified approach to Bernstein functions and closely related function classes, bringing together old and establishing new connections. For the second edition the authors added a substantial amount of new material. As in the first edition Chapters 1 to 11 contain general material which should be accessible to non-specialists, while the later Chapters 12 to 15 are devoted to more specialized topics. An extensive list of complete Bernstein functions with their representations is provided.

515 citations

Journal ArticleDOI
TL;DR: In this article, a fractional non-Markov Poisson stochastic process has been developed based on fractional generalization of the Kolmogorov-Feller equation.

302 citations


Additional excerpts

  • ...[6]; Laskin [7]; Meerschaert et al....

    [...]

Journal ArticleDOI
TL;DR: In this article, it was shown that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional poisson process with Mittag-Leffler waiting times, which unifies the two main approaches in stochastic theory of time-fractional diffusion equations.
Abstract: The fractional Poisson process is a renewal process with Mittag-Leffler waiting times. Its distributions solve a time-fractional analogue of the Kolmogorov forward equation for a Poisson process. This paper shows that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional Poisson process. This result unifies the two main approaches in the stochastic theory of time-fractional diffusion equations. The equivalence extends to a broad class of renewal processes that include models for tempered fractional diffusion, and distributed-order (e.g., ultraslow) fractional diffusion. The paper also {discusses the relation between} the fractional Poisson process and Brownian time.

243 citations

Book
01 Jan 2001
TL;DR: In this paper, the peculiar mechanics of the elementary particles (electrons and nuclei) that constitute ordinary matter so that the material world can have both rich variety and stability are discussed.
Abstract: Why is ordinary matter (e.g., atoms, molecules, people, planets, stars) as stable as it is? Why is it the case, if an atom is thought to be a miniature solar system, that bringing very large numbers of atoms together (say 1030) does not produce a violent explosion? Sometimes explosions do occur, as when stars collapse to form supernovae, but normally matter is well behaved. In short, what is the peculiar mechanics of the elementary particles (electrons and nuclei) that constitute ordinary matter so that the material world can have both rich variety and stability?

232 citations

Journal ArticleDOI
TL;DR: In this paper, a parametric family of completely random measures, which includes gamma random measures and positive stable random measures as well as inverse Gaussian measures, is defined and used in a shot-noise construction as intensity measures for Cox processes.
Abstract: A parametric family of completely random measures, which includes gamma random measures, positive stable random measures as well as inverse Gaussian measures, is defined. In order to develop models for clustered point patterns with dependencies between points, the family is used in a shot-noise construction as intensity measures for Cox processes. The resulting Cox processes are of Poisson cluster process type and include Poisson processes and ordinary Neyman-Scott processes. We show characteristics of the completely random measures, illustrated by simulations, and derive moment and mixing properties for the shot-noise random measures. Finally statistical inference for shot-noise Cox processes is considered and some results on nearest-neighbour Markov properties are given.

222 citations


"Counting processes with Bernštein i..." refers methods in this paper

  • ...The Poisson process and the negative binomial processes have been generalized in many directions; see, for example, Beghin (2013), Brix (1999), Cahoy and Polito (2012), Di Crescenzo et al. (2015), and Vellaisamy and Maheshwari (2014)....

    [...]