scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Coupled interaction between unsteady flame dynamics and acoustic field in a turbulent combustor

TL;DR: A possible asymmetric bidirectional coupling between q ˙ ' and p ' is observed to exert a stronger influence on p ' than vice versa, and the directional property of the network measure, namely, cross transitivity is used to analyze the type of coupling existing between the acoustic field and the heat release rate fluctuations.
Abstract: Thermoacoustic instability is a result of the positive feedback between the acoustic pressure and the unsteady heat release rate fluctuations in a combustor. We apply the framework of the synchronization theory to study the coupled behavior of these oscillations during the transition to thermoacoustic instability in a turbulent bluff-body stabilized gas-fired combustor. Furthermore, we characterize this complex behavior using recurrence plots and recurrence networks. We mainly found that the correlation of probability of recurrence ( C P R), the joint probability of recurrence ( J P R), the determinism ( D E T), and the recurrence rate ( R R) of the joint recurrence matrix aid in detecting the synchronization transitions in this thermoacoustic system. We noticed that C P R and D E T can uncover the occurrence of phase synchronization state, whereas J P R and R R can be used as indices to identify the occurrence of generalized synchronization (GS) state in the system. We applied measures derived from joint and cross recurrence networks and observed that the joint recurrence network measures, transitivity ratio, and joint transitivity are useful to detect GS. Furthermore, we use the directional property of the network measure, namely, cross transitivity to analyze the type of coupling existing between the acoustic field ( p ′) and the heat release rate ( q ˙ ′) fluctuations. We discover a possible asymmetric bidirectional coupling between q ˙ ′ and p ′, wherein q ˙ ′ is observed to exert a stronger influence on p ′ than vice versa.Thermoacoustic instability is a result of the positive feedback between the acoustic pressure and the unsteady heat release rate fluctuations in a combustor. We apply the framework of the synchronization theory to study the coupled behavior of these oscillations during the transition to thermoacoustic instability in a turbulent bluff-body stabilized gas-fired combustor. Furthermore, we characterize this complex behavior using recurrence plots and recurrence networks. We mainly found that the correlation of probability of recurrence ( C P R), the joint probability of recurrence ( J P R), the determinism ( D E T), and the recurrence rate ( R R) of the joint recurrence matrix aid in detecting the synchronization transitions in this thermoacoustic system. We noticed that C P R and D E T can uncover the occurrence of phase synchronization state, whereas J P R and R R can be used as indices to identify the occurrence of generalized synchronization (GS) state in the system. We applied measures derive...
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors highlight the importance of the inherent fluctuations in the system in providing early warning signals for critical transitions and highlight the challenges faced while detecting oscillatory instabilities in practical systems.
Abstract: Many complex systems undergo critical transitions. A thermoacoustic system is one such system which exhibits a catastrophic transition to a state of oscillatory instability known as thermoacoustic instability. So far, several early warning signals have been devised to detect the transition from stable operation to thermoacoustic instability in both laminar and turbulent systems. We focus on these early warning signals, and the challenges faced while detecting oscillatory instabilities in practical systems. In contrast to the transition from a fixed point to limit cycle oscillations in laminar systems, turbulent systems exhibit a transition from a chaotic state to limit cycle via a state of intermittency. In this review, we highlight the importance of the inherent fluctuations in the system in providing early warning signals for critical transitions.

16 citations

Journal ArticleDOI
TL;DR: In this paper, the authors quantify the vorticity interactions in a bluff body stabilized turbulent combustor during the transition from combustion noise to thermo-acoustic instability via intermittency using complex networks and discover two optimal locations for injecting steady air jets to successfully suppress the thermoacoustic oscillations.
Abstract: In the present study, we quantify the vorticity interactions in a bluff body stabilized turbulent combustor during the transition from combustion noise to thermoacoustic instability via intermittency using complex networks. To that end, we perform simultaneous acoustic pressure, high-speed particle image velocimetry (PIV) and high-speed chemiluminescence measurements during the occurrence of combustion noise, intermittency and thermoacoustic instability. Based on the Biot–Savart law, we construct time-varying weighted spatial networks from the flow fields during these different regimes of combustor operation. We uncover that the turbulent networks display weighted scale-free behaviour intermittently during the different regimes of combustor operation, with the strong vortical structures acting as the hubs. Further, we discover two optimal locations for injecting steady air jets to successfully suppress the thermoacoustic oscillations. The amplitude of the acoustic pressure fluctuations of the suppressed state is comparable to that during the occurrence of combustion noise. However, the weighted scale-free network topology during the suppressed state is not as dominant as compared with the state of combustion noise.

15 citations

Journal ArticleDOI
TL;DR: In this paper, the formation mechanism of high-frequency combustion oscillations in a model rocket combustor from the viewpoint of symbolic dynamics and complex networks was studied. But the model combustor was not considered.
Abstract: We study the formation mechanism of high-frequency combustion oscillations in a model rocket combustor from the viewpoints of symbolic dynamics and complex networks. The flow velocity fluctuations in the fuel injector generated by the pressure fluctuations in the combustor give rise to the periodic ignition of the unburnt fuel/oxidizer mixture, resulting in a significant change in the heat release rate fluctuations in the combustor. The heat release rate fluctuations drive the pressure fluctuations in the combustor before a transition state, while the pressure fluctuations in the combustor gradually begin to significantly affect the heat release rate fluctuations during the transition to combustion oscillations. The directional feedback process during the transition and subsequent combustion oscillations is identified by the directionality index of the symbolic transfer entropy. The thermoacoustic power network enables us to understand the physical mechanism behind the transition and subsequent combustion oscillations.

14 citations

Journal ArticleDOI
TL;DR: Recurrence lacunarity captures both the rich variability in dynamical complexity of acoustic pressure fluctuations and shifting time scales encoded in the recurrence plots and contributes to a better distinction between stable operation and near blowout states of combustors.
Abstract: We propose lacunarity as a novel recurrence quantification measure and illustrate its efficacy to detect dynamical regime transitions which are exhibited by many complex real-world systems. We carry out a recurrence plot-based analysis for different paradigmatic systems and nonlinear empirical data in order to demonstrate the ability of our method to detect dynamical transitions ranging across different temporal scales. It succeeds to distinguish states of varying dynamical complexity in the presence of noise and non-stationarity, even when the time series is of short length. In contrast to traditional recurrence quantifiers, no specification of minimal line lengths is required and geometric features beyond linear structures in the recurrence plot can be accounted for. This makes lacunarity more broadly applicable as a recurrence quantification measure. Lacunarity is usually interpreted as a measure of heterogeneity or translational invariance of an arbitrary spatial pattern. In application to recurrence plots, it quantifies the degree of heterogeneity in the temporal recurrence patterns at all relevant time scales. We demonstrate the potential of the proposed method when applied to empirical data, namely time series of acoustic pressure fluctuations from a turbulent combustor. Recurrence lacunarity captures both the rich variability in dynamical complexity of acoustic pressure fluctuations and shifting time scales encoded in the recurrence plots. Furthermore, it contributes to a better distinction between stable operation and near blowout states of combustors.

13 citations

Journal ArticleDOI
TL;DR: In most cases, the method is able to timely predict two types of thermoacoustic instabilities on test data not used for training, and the results are compared with state-of-the-art early warning indicators.
Abstract: Combustion instabilities are particularly problematic for rocket thrust chambers because of their high energy release rates and their operation close to the structural limits. In the last decades, progress has been made in predicting high amplitude combustion instabilities but still, no reliable prediction ability is given. Reliable early warning signals are the main requirement for active combustion control systems. In this paper, we present a data-driven method for the early detection of thermoacoustic instabilities. Recurrence quantification analysis is used to calculate characteristic combustion features from short-length time series of dynamic pressure sensor data. Features like the recurrence rate are used to train support vector machines to detect the onset of an instability a few hundred milliseconds in advance. The performance of the proposed method is investigated on experimental data from a representative LOX/H$_2$ research thrust chamber. In most cases, the method is able to timely predict two types of thermoacoustic instabilities on test data not used for training. The results are compared with state-of-the-art early warning indicators.

13 citations

References
More filters
Journal ArticleDOI
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Abstract: Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.

17,647 citations

Journal ArticleDOI
01 Nov 1987-EPL
TL;DR: In this article, a graphical tool for measuring the time constancy of dynamical systems is presented and illustrated with typical examples, and the tool can be used to measure the time complexity of a dynamical system.
Abstract: A new graphical tool for measuring the time constancy of dynamical systems is presented and illustrated with typical examples.

2,843 citations

Journal ArticleDOI
TL;DR: A practical method to determine the minimum embedding dimension from a scalar time series that has the following advantages: does not contain any subjective parameters except for the time-delay for the embedding.

1,485 citations

Journal ArticleDOI
TL;DR: This paper illustrates how recurrence plots can take single physiological measurements, project them into multidimensional space by embedding procedures, and identify time correlations (recurrences) that are not apparent in the one-dimensional time series.
Abstract: Physiological systems are best characterized as complex dynamical processes that are continuously subjected to and updated by nonlinear feedforward and feedback inputs. System outputs usually exhibit wide varieties of behaviors due to dynamical interactions between system components, external noise perturbations, and physiological state changes. Complicated interactions occur at a variety of hierarchial levels and involve a number of interacting variables, many of which are unavailable for experimental measurement. In this paper we illustrate how recurrence plots can take single physiological measurements, project them into multidimensional space by embedding procedures, and identify time correlations (recurrences) that are not apparent in the one-dimensional time series. We extend the original description of recurrence plots by computing an array of specific recurrence variables that quantify the deterministic structure and complexity of the plot. We then demonstrate how physiological states can be assessed by making repeated recurrence plot calculations within a window sliding down any physiological dynamic. Unlike other predominant time series techniques, recurrence plot analyses are not limited by data stationarity and size constraints. Pertinent physiological examples from respiratory and skeletal motor systems illustrate the utility of recurrence plots in the diagnosis of nonlinear systems. The methodology is fully applicable to any rhythmical system, whether it be mechanical, electrical, neural, hormonal, chemical, or even spacial.

1,327 citations

Journal ArticleDOI
TL;DR: Applying measures of complexity based on vertical structures in recurrence plots and applying them to the logistic map as well as to heart-rate-variability data is able to detect and quantify the laminar phases before a life-threatening cardiac arrhythmia occurs thereby facilitating a prediction of such an event.
Abstract: The knowledge of transitions between regular, laminar or chaotic behaviors is essential to understand the underlying mechanisms behind complex systems. While several linear approaches are often insufficient to describe such processes, there are several nonlinear methods that, however, require rather long time observations. To overcome these difficulties, we propose measures of complexity based on vertical structures in recurrence plots and apply them to the logistic map as well as to heart-rate-variability data. For the logistic map these measures enable us not only to detect transitions between chaotic and periodic states, but also to identify laminar states, i.e., chaos-chaos transitions. The traditional recurrence quantification analysis fails to detect the latter transitions. Applying our measures to the heart-rate-variability data, we are able to detect and quantify the laminar phases before a life-threatening cardiac arrhythmia occurs thereby facilitating a prediction of such an event. Our findings could be of importance for the therapy of malignant cardiac arrhythmias.

890 citations