scispace - formally typeset
Search or ask a question
Posted Content

Covalent Hybrid of Spinel Manganese-Cobalt Oxide and Gra-phene as Advanced Oxygen Reduction Electrocatalysts

TL;DR: In this paper, a manganese-cobalt spinel MnCo2O4/graphene hybrid was developed as a highly efficient electrocatalyst for oxygen reduction reaction (ORR) in alkaline conditions.
Abstract: Through direct nanoparticle nucleation and growth on nitrogen doped, reduced graphene oxide sheets and cation substitution of spinel Co3O4 nanoparticles, a manganese-cobalt spinel MnCo2O4/graphene hybrid was developed as a highly efficient electrocatalyst for oxygen reduction reaction (ORR) in alkaline conditions. Electrochemical and X-ray near edge structure (XANES) investigations revealed that the nucleation and growth method for forming inorganic-nanocarbon hybrid results in covalent coupling between spinel oxide nanoparticles and N-doped reduced graphene oxide (N-rmGO) sheets. Carbon K-edge and nitrogen K-edge XANES showed strongly perturbed C-O and C-N bonding in the N-rmGO sheet, suggesting the formation of C-O-metal and C-N-metal bonds between N-doped graphene oxide and spinel oxide nanoparticles. Co L-edge and Mn L-edge XANES suggested substitu-tion of Co3+ sites by Mn3+, which increased the activity of the catalytic sites in the hybrid materials, further boosting the ORR activity compared to the pure cobalt oxide hybrid. The covalently bonded hybrid afforded much greater activity and durability than the physi-cal mixture of nanoparticles and carbon materials including N-rmGO. At the same mass loading, the MnCo2O4/N-graphene hybrid can outperform Pt/C in ORR current density at medium overpotentials with superior stability to Pt/C in alkaline solutions.
Citations
More filters
Journal ArticleDOI
TL;DR: The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward a series of key clean energy conversion reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties.
Abstract: A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.

3,918 citations

Journal ArticleDOI
TL;DR: It is found that Fe(3)O(4)/N-GAs show a more positive onset potential, higher cathodic density, lower H(2)O-2) yield, and higher electron transfer number for the ORR in alkaline media than Fe( 3)O (4) NPs supported on N-doped carbon black or N- doped graphene sheets, highlighting the importance of the 3D macropores and high specific surface area of the GA support for
Abstract: Three-dimensional (3D) N-doped graphene aerogel (N-GA)-supported Fe3O4 nanoparticles (Fe3O4/N-GAs) as efficient cathode catalysts for the oxygen reduction reaction (ORR) are reported. The graphene hybrids exhibit an interconnected macroporous framework of graphene sheets with uniform dispersion of Fe3O4 nanoparticles (NPs). In studying the effects of the carbon support on the Fe3O4 NPs for the ORR, we found that Fe3O4/N-GAs show a more positive onset potential, higher cathodic density, lower H2O2 yield, and higher electron transfer number for the ORR in alkaline media than Fe3O4 NPs supported on N-doped carbon black or N-doped graphene sheets, highlighting the importance of the 3D macropores and high specific surface area of the GA support for improving the ORR performance. Furthermore, Fe3O4/N-GAs show better durability than the commercial Pt/C catalyst.

1,952 citations

Journal ArticleDOI
TL;DR: Recent research advances in the rational design and efficient synthesis of MTMOs with controlled shapes, sizes, compositions, and micro-/nanostructures are summarized, along with their applications as electrode materials for lithium-ion batteries and electrochemical capacitors, and efficient electrocatalysts for the oxygen reduction reaction in metal-air batteries and fuel cells.
Abstract: A promising family of mixed transition-metal oxides (MTMOs) (designated as Ax B3-x O4 ; A, B=Co, Ni, Zn, Mn, Fe, etc.) with stoichiometric or even non-stoichiometric compositions, typically in a spinel structure, has recently attracted increasing research interest worldwide. Benefiting from their remarkable electrochemical properties, these MTMOs will play significant roles for low-cost and environmentally friendly energy storage/conversion technologies. In this Review, we summarize recent research advances in the rational design and efficient synthesis of MTMOs with controlled shapes, sizes, compositions, and micro-/nanostructures, along with their applications as electrode materials for lithium-ion batteries and electrochemical capacitors, and efficient electrocatalysts for the oxygen reduction reaction in metal-air batteries and fuel cells. Some future trends and prospects to further develop advanced MTMOs for next-generation electrochemical energy storage/conversion systems are also presented.

1,939 citations

Journal ArticleDOI
TL;DR: The most recent advances in the development of Pt-based and Pt-free materials in the field of fuel cell ORR catalysis are reviewed to provide insights into the remaining challenges and directions for future perspectives and research.
Abstract: Developing highly efficient catalysts for the oxygen reduction reaction (ORR) is key to the fabrication of commercially viable fuel cell devices and metal–air batteries for future energy applications. Herein, we review the most recent advances in the development of Pt-based and Pt-free materials in the field of fuel cell ORR catalysis. This review covers catalyst material selection, design, synthesis, and characterization, as well as the theoretical understanding of the catalysis process and mechanisms. The integration of these catalysts into fuel cell operations and the resulting performance/durability are also discussed. Finally, we provide insights into the remaining challenges and directions for future perspectives and research.

1,752 citations

Journal ArticleDOI
TL;DR: The fundamentals, challenges, and latest exciting advances related to zinc-air research are presented, and the detrimental effect of CO2 on battery performance is emphasized, and possible solutions summarized.
Abstract: Zinc–air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc–air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc–air research. Detailed discussion will be organized around the individual components of the system – from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal–air batteries are briefly overviewed and compared in favor of zinc–air.

1,747 citations

References
More filters
Book
01 Jan 1980
TL;DR: In this paper, the authors present a comprehensive overview of electrode processes and their application in the field of chemical simulation, including potential sweep and potential sweep methods, coupled homogeneous chemical reactions, double-layer structure and adsorption.
Abstract: Major Symbols. Standard Abbreviations. Introduction and Overview of Electrode Processes. Potentials and Thermodynamics of Cells. Kinetics of Electrode Reactions. Mass Transfer by Migration and Diffusion. Basic Potential Step Methods. Potential Sweep Methods. Polarography and Pulse Voltammetry. Controlled--Current Techniques. Method Involving Forced Convention--Hydrodynamic Methods. Techniques Based on Concepts of Impedance. Bulk Electrolysis Methods. Electrode Reactions with Coupled Homogeneous Chemical Reactions. Double--Layer Structure and Adsorption. Electroactive Layers and Modified Electrodes. Electrochemical Instrumentation. Scanning Probe Techniques. Spectroelectrochemistry and Other Coupled Characterization Methods. Photoelectrochemistry and Electrogenerated Chemiluminescence. Appendix A: Mathematical Methods. Appendix B: Digital Simulations of Electrochemical Problems. Appendix C: Reference Tables. Index.

20,533 citations

Journal ArticleDOI
06 Feb 2008-Nature
TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Abstract: Researchers must find a sustainable way of providing the power our modern lifestyles demand.

15,980 citations

Journal ArticleDOI
TL;DR: The Co₃O₄/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions, making it a high-performance non-precious metal-based bi-catalyst for both ORR and OER.
Abstract: Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable-energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low cost remains a great challenge. Here, we report a hybrid material consisting of Co₃O₄ nanocrystals grown on reduced graphene oxide as a high-performance bi-functional catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Although Co₃O₄ or graphene oxide alone has little catalytic activity, their hybrid exhibits an unexpected, surprisingly high ORR activity that is further enhanced by nitrogen doping of graphene. The Co₃O₄/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions. The same hybrid is also highly active for OER, making it a high-performance non-precious metal-based bi-catalyst for both ORR and OER. The unusual catalytic activity arises from synergetic chemical coupling effects between Co₃O₄ and graphene.

4,898 citations

Journal ArticleDOI
TL;DR: In this article, a selective solvothermal synthesis of MoS2 nanoparticles on reduced graphene oxide (RGO) sheets suspended in solution was developed, which exhibited superior electrocatalytic activity in the hydrogen evolution reaction (HER).
Abstract: Advanced materials for electrocatalytic and photoelectrochemical water splitting are central to the area of renewable energy. In this work, we developed a selective solvothermal synthesis of MoS2 nanoparticles on reduced graphene oxide (RGO) sheets suspended in solution. The resulting MoS2/RGO hybrid material possessed nanoscopic few-layer MoS2 structures with an abundance of exposed edges stacked onto graphene, in strong contrast to large aggregated MoS2 particles grown freely in solution without GO. The MoS2/RGO hybrid exhibited superior electrocatalytic activity in the hydrogen evolution reaction (HER) relative to other MoS2 catalysts. A Tafel slope of ∼41 mV/decade was measured for MoS2 catalysts in the HER for the first time; this exceeds by far the activity of previous MoS2 catalysts and results from the abundance of catalytic edge sites on the MoS2 nanoparticles and the excellent electrical coupling to the underlying graphene network. The ∼41 mV/decade Tafel slope suggested the Volmer–Heyrovsky mec...

4,370 citations

Posted Content
TL;DR: It is found that simple physisorption via π-stacking can be used for loading doxorubicin, a widely used cancer drug onto NGO functionalized with antibody for selective killing of cancer cells in vitro.
Abstract: Two-dimensional graphene offers interesting electronic, thermal and mechanical properties that are currently explored for advanced electronics, membranes and composites. Here we synthesize and explore the biological application of nano-graphene oxide NGO, single-layer graphene oxide sheets down to a few nanometers in lateral width. We develop functionalization chemistry to impart solubility and compatibility of NGO in biological environments. We obtain size separated pegylated NGO sheets that are soluble in buffers and serum without agglomeration. The NGO sheets are found to be photoluminescent in the visible and infrared regions. The intrinsic photoluminescence of NGO is used for live cell imaging in the near-infrared with little background. We found that simple physisorption via pi-stacking can be used for loading doxorubicin, a widely used cancer drug onto NGO functionalized with antibody for selective cancer cell killing in vitro. Owing to the small size, intrinsic optical properties, large specific surface area,low cost, and useful non-covalent interactions with aromatic drug molecules, NGO is a promising new material for biological and medical applications.

2,783 citations

Related Papers (5)