scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Covalent Modification of Carbon Surfaces by Grafting of Functionalized Aryl Radicals Produced from Electrochemical Reduction of Diazonium Salts

01 Jul 1992-Journal of the American Chemical Society (American Chemical Society)-Vol. 114, Iss: 14, pp 5883-5884
About: This article is published in Journal of the American Chemical Society.The article was published on 1992-07-01. It has received 941 citations till now. The article focuses on the topics: Diazonium Compounds & Aryl.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the physical and chemical properties of Boron-Doped Diamond for Electrochemistry as well as a mechanistic analysis of the properties of the diamond itself and some of its applications.
Abstract: 3.6.1. Polishing and Cleaning 2663 3.6.2. Vacuum and Heat Treatments 2664 3.6.3. Carbon Electrode Activation 2665 3.7. Summary and Generalizations 2666 4. Advanced Carbon Electrode Materials 2666 4.1. Microfabricated Carbon Thin Films 2666 4.2. Boron-Doped Diamond for Electrochemistry 2668 4.3. Fibers and Nanotubes 2669 4.4. Carbon Composite Electrodes 2674 5. Carbon Surface Modification 2675 5.1. Diazonium Ion Reduction 2675 5.2. Thermal and Photochemical Modifications 2679 5.3. Amine and Carboxylate Oxidation 2680 5.4. Modification by “Click” Chemistry 2681 6. Synopsis and Outlook 2681 7. Acknowledgments 2682 8. References 2682

2,240 citations

Journal ArticleDOI
01 Jan 1995-Carbon
TL;DR: In this paper, X-ray photoelectron spectroscopy (XPS) was used to investigate the fate of nitrogen functional forms present in a lignite and its chars, derived from the model compounds acridine, carbazole and polyacrylonitrile (PAN).

1,792 citations

Journal ArticleDOI
TL;DR: Methods for the preparation of mesoporous carbon materials with extremely high surface areas and ordered mesostructures, with potential applications as catalysts, separation media, and advanced electronic materials in many scientific disciplines are developed.
Abstract: Porous carbon materials are of interest in many applications because of their high surface area and physicochemical properties. Conventional syntheses can only produce randomly porous materials, with little control over the pore-size distributions, let alone mesostructures. Recent breakthroughs in the preparation of other porous materials have resulted in the development of methods for the preparation of mesoporous carbon materials with extremely high surface areas and ordered mesostructures, with potential applications as catalysts, separation media, and advanced electronic materials in many scientific disciplines. Current syntheses can be categorized as either hard-template or soft-template methods. Both are examined in this Review along with procedures for surface functionalization of the carbon materials obtained.

1,716 citations

Journal ArticleDOI
TL;DR: Nanotubes derivatized with a 4-tert-butylbenzene moiety were found to possess significantly improved solubility in organic solvents and represents the marriage of wire-like nanotubes with molecular electronic devices.
Abstract: Small-diameter (ca. 0.7 nm) single-wall carbon nanotubes are predicted to display enhanced reactivity relative to larger-diameter nanotubes due to increased curvature strain. The derivatization of these small-diameter nanotubes via electrochemical reduction of a variety of aryl diazonium salts is described. The estimated degree of functionalization is as high as one out of every 20 carbons in the nanotubes bearing a functionalized moiety. The functionalizing moieties can be removed by heating in an argon atmosphere. Nanotubes derivatized with a 4-tert-butylbenzene moiety were found to possess significantly improved solubility in organic solvents. Functionalization of the nanotubes with a molecular system that has exhibited switching and memory behavior is shown. This represents the marriage of wire-like nanotubes with molecular electronic devices.

1,390 citations

Journal ArticleDOI
TL;DR: This review will cover all the literature on reactions in which cyclodextrins bind substrates and then either catalyze their reactions or mimic a step in an enzymatic catalytic sequence, however, it will not describe work in which Cyclodextrin simply change the course of a reaction without playing an obvious catalytic role involving substrate binding.
Abstract: Cyclodextrins are extremely attractive components of artificial enzymes and other biomimetic materials. They are readily available, they bind hydrophobic substrates into their cavities in water solution, and they have two rims of hydroxyl groups (Figure 1) that can either react with substrates themselves or be used to attach other catalytic and functional groups. Of course, they have disadvantages. For one, unless they are extensively modified their complexes with substrates can be rather flexible and, perhaps, with unpredictable preferred geometry. They are also unstable to strong acid. Thus for some purposes such synthetic cavity species as calixerenes1 or synthetic macrocycles2-4 may have advantages. However, one of the chief advantages of cyclodextrins is highly attractivesthey are readily available, so it is possible to avoid the synthesis of a binding group and go directly to studies of what can be achieved with their use. Afterward, the lessons learned may be applied to other systems with advantage. This review will cover all the literature on reactions in which cyclodextrins bind substrates and then either catalyze their reactions or mimic a step in an enzymatic catalytic sequence. However, it will not describe work in which cyclodextrins simply change the course of a reaction without playing an obvious catalytic role involving substrate binding. For example, there are systems in which the main function of the cyclodextrin seems to be to complex a metal ion and keep it in solution.5-11 There are other studies in which binding into a cyclodextrin simply alters the selectivity of attack by an external reagent in some way12-24 or causes solubilization to facilitate phase transfer catalysis.12,25,26 Presumably such other areas are described elsewhere in this volume. While much work on artificial enzymes using cyclodextrins has been done in the author’s laboratory, and will be described, every effort is made to describe all the relevant work in the field. Several reviews of this subject already exist and should be consulted for further information.2,27-70 The readily Ronald Breslow, born in 1931 in Rahway, NJ, completed his B.A. in chemistry in1952, his M.A. in medical science in 1953, and his Ph.D. in chemistry in 1955 with R. B. Woodward, all at Harvard University. After a postdoctoral year with Alexander Todd in Cambridge, he came to Columbia University where he is now University Professor and Professor of Chemistry. His work on enzyme models, on novel conjugated aromatic and antiaromatic molecules, on electrochemical and hydrophobic methods in mechanistic chemistry, and on anticancer cytodifferentiating agents has been recognized by a number of awards, including the U.S. National Medal of Science. In 1996, he served as President of the American Chemical Society.

1,106 citations