scispace - formally typeset
Search or ask a question
Journal ArticleDOI

COVID-19 pandemic: insights into molecular mechanisms leading to sex-based differences in patient outcomes.

TL;DR: In this article, the authors conducted a systematic review of the existing empirical knowledge and recent experimental studies following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
Abstract: Recent epidemiological studies analysing sex-disaggregated patient data of coronavirus disease 2019 (COVID-19) across the world revealed a distinct sex bias in the disease morbidity as well as the mortality - both being higher for the men. Similar antecedents have been known for the previous viral infections, including from coronaviruses, such as severe acute respiratory syndrome (SARS) and middle-east respiratory syndrome (MERS). A sound understanding of molecular mechanisms leading to the biological sex bias in the survival outcomes of the patients in relation to COVID-19 will act as an essential requisite for developing a sex-differentiated approach for therapeutic management of this disease. Recent studies which have explored molecular mechanism(s) behind sex-based differences in COVID-19 pathogenesis are scarce; however, existing evidence, for other respiratory viral infections, viz. SARS, MERS and influenza, provides important clues in this regard. In attempt to consolidate the available knowledge on this issue, we conducted a systematic review of the existing empirical knowledge and recent experimental studies following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The qualitative analysis of the collected data unravelled multiple molecular mechanisms, such as evolutionary and genetic/epigenetic factors, sex-linkage of viral host cell entry receptor and immune response genes, sex hormone and gut microbiome-mediated immune-modulation, as the possible key reasons for the sex-based differences in patient outcomes in COVID-19.
Citations
More filters
Journal ArticleDOI
TL;DR: The long-term prevalence and risk factors for post-acute COVID-19 sequelae (PASC) are not well described and may have important implications for unvaccinated populations and policy makers as mentioned in this paper .
Abstract: The long-term prevalence and risk factors for post-acute COVID-19 sequelae (PASC) are not well described and may have important implications for unvaccinated populations and policy makers.To assess health status, persistent symptoms, and effort tolerance approximately 1 year after COVID-19 infection DESIGN: Retrospective observational cohort study using surveys and clinical data PARTICIPANTS: Survey respondents who were survivors of acute COVID-19 infection requiring Emergency Department presentation or hospitalization between March 3 and May 15, 2020.Self-reported health status, persistent symptoms, and effort tolerance KEY RESULTS: The 530 respondents (median time between hospital presentation and survey 332 days [IQR 325-344]) had mean age 59.2±16.3 years, 44.5% were female and 70.8% were non-White. Of these, 41.5% reported worse health compared to a year prior, 44.2% reported persistent symptoms, 36.2% reported limitations in lifting/carrying groceries, 35.5% reported limitations climbing one flight of stairs, 38.1% reported limitations bending/kneeling/stooping, and 22.1% reported limitations walking one block. Even those without high-risk comorbid conditions and those seen only in the Emergency Department (but not hospitalized) experienced significant deterioration in health, persistent symptoms, and limitations in effort tolerance. Women (adjusted relative risk ratio [aRRR] 1.26, 95% CI 1.01-1.56), those requiring mechanical ventilation (aRRR 1.48, 1.02-2.14), and people with HIV (aRRR 1.75, 1.14-2.69) were significantly more likely to report persistent symptoms. Age and other risk factors for more severe COVID-19 illness were not associated with increased risk of PASC.PASC may be extraordinarily common 1 year after COVID-19, and these symptoms are sufficiently severe to impact the daily exercise tolerance of patients. PASC symptoms are broadly distributed, are not limited to one specific patient group, and appear to be unrelated to age. These data have implications for vaccine hesitant individuals, policy makers, and physicians managing the emerging longer-term yet unknown impact of the COVID-19 pandemic.

29 citations

Journal ArticleDOI
TL;DR: A review of the progress made since the commencement of the COVID-19 pandemic can be found in this article, where the authors narrate the progress in the human body, including virus-host interactions, pulmonary and other systemic manifestations, immunological dysregulations, complications, host-specific vulnerability, and long-term health consequences in the survivors.
Abstract: More than one and a half years have elapsed since the commencement of the coronavirus disease 2019 (COVID-19) pandemic, and the world is struggling to contain it. Being caused by a previously unknown virus, in the initial period, there had been an extreme paucity of knowledge about the disease mechanisms, which hampered preventive and therapeutic measures against COVID-19. In an endeavor to understand the pathogenic mechanisms, extensive experimental studies have been conducted across the globe involving cell culture-based experiments, human tissue organoids, and animal models, targeted to various aspects of the disease, viz., viral properties, tissue tropism and organ-specific pathogenesis, involvement of physiological systems, and the human immune response against the infection. The vastly accumulated scientific knowledge on all aspects of COVID-19 has currently changed the scenario from great despair to hope. Even though spectacular progress has been made in all of these aspects, multiple knowledge gaps are remaining that need to be addressed in future studies. Moreover, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have emerged across the globe since the onset of the first COVID-19 wave, with seemingly greater transmissibility/virulence and immune escape capabilities than the wild-type strain. In this review, we narrate the progress made since the commencement of the pandemic regarding the knowledge on COVID-19 mechanisms in the human body, including virus-host interactions, pulmonary and other systemic manifestations, immunological dysregulations, complications, host-specific vulnerability, and long-term health consequences in the survivors. Additionally, we provide a brief review of the current evidence explaining molecular mechanisms imparting greater transmissibility and virulence and immune escape capabilities to the emerging SARS-CoV-2 variants.

25 citations

Journal ArticleDOI
TL;DR: The new SARS-CoV-2 variants have key mutations that can induce significant changes in the virus-host interactions, such as binding of the receptor-binding domain (RBD) of the viral spike protein with the ACE2 receptor in the host-cells, increase the glycosylation of spike protein at the antigenic sites, and enhance the proteolytic cleavage of the spike protein, thus leading to improved host-cell entry and the replication of the virus as discussed by the authors.
Abstract: Young age, female sex, absence of comorbidities, and prior infection or vaccination are known epidemiological barriers for contracting the new infection and/or increased disease severity. Demographic trends from the recent COVID-19 waves, which are believed to be driven by newer SARS-CoV-2 variants, indicate that the aforementioned epidemiological barriers are being breached and a larger number of younger and healthy individuals are developing severe disease. The new SARS-CoV-2 variants have key mutations that can induce significant changes in the virus-host interactions. Recent studies report that, some of these mutations, singly or in a group, enhance key mechanisms, such as binding of the receptor-binding domain (RBD) of the viral spike protein with the ACE2 receptor in the host-cells, increase the glycosylation of spike protein at the antigenic sites, and enhance the proteolytic cleavage of the spike protein, thus leading to improved host-cell entry and the replication of the virus. The putative changes in the virus-host interactions imparted by the mutations in the RBD sequence can potentially be the reason behind the breach of the observed epidemiological barriers. Susceptibility for contracting SARS-CoV-2 infection and the disease outcomes are known to be influenced by host-cell expressions of ACE2 and other proteases. The new variants can act more efficiently, and even with the lesser availability of the viral entry-receptor and the associated proteases, can have more efficient host-cell entry and greater replication resulting in high viral loads and prolonged viral shedding, widespread tissue-injury, and severe inflammation leading to increased transmissibility and lethality. Furthermore, the accumulating evidence shows that multiple new variants have reduced neutralization by both, natural and vaccine acquired antibodies, indicating that repeated and vaccine breakthrough infections may arise as serious health concerns in the ongoing pandemic. This article is protected by copyright. All rights reserved.

23 citations

Journal ArticleDOI
31 May 2022-Viruses
TL;DR: Results from the largest cohort of remdesivir-treated patients suggests that mortality in Sars-CoV-2 hospitalized patients is substantially influenced by the days between SARS-Cov-2 diagnosis and drug prescription.
Abstract: Remdesivir is the first drug approved for treatment of COVID-19 but current evidence for recommending its use for the treatment of moderate-to-severe disease is still controversial among clinical guidelines. We performed a nationwide, registry-based study including all Italian hospitalized patients with COVID-19 treated with remdesivir to assess the impact of major confounders on crude 15-day and 29-day mortality. Mortality was calculated using the Kaplan–Meier estimator and the Cox proportional-hazards model was applied to analyze the risks by patient’s baseline features. In total, 16,462 patients treated with remdesivir from 29 October 2020 to 17 December 2020 were entered in the study. Crude 15-day and 29-day mortality were 7.1% (95% CI, 6.7–7.5%) and 11.7% (95% CI, 11.2–12.2%), respectively. Being treated within two days of admission reduced the risk of death by about 40% (HR 1.4, 95% CI, 1.2–1.6). Results from the largest cohort of remdesivir-treated patients suggests that mortality in SARS-CoV-2 hospitalized patients is substantially influenced by the days between SARS-CoV-2 diagnosis and drug prescription. Current recommendations and future clinical trials for remdesivir alone or in combination should carefully consider the target population and timing for best efficacy of treatment.

7 citations

Posted ContentDOI
26 Sep 2021-medRxiv
TL;DR: In this article, the authors performed a demographic characterization of COVID-19 cases in Indian population diagnosed with SARS-CoV-2 genomic sequencing for delta variant, in terms of age and sex, severity of the illness and mortality rate, and post vaccination infections.
Abstract: ImportanceHigher risks of contracting infection, developing severe illness and mortality are known facts in aged and male sex if exposed to the wild type SARS-CoV-2 strains (Wuhan and B.1 strains). Now, accumulating evidence suggests greater involvement of lower age and narrowing the age and sex based differences for the severity of symptoms in infections with emerging SARS-CoV-2 variants. Delta variant (B.1.617.2) is now a globally dominant SARS-CoV-2 strain, however, current evidence on demographic characteristics for this variant are limited. Recently, delta variant caused a devastating second wave of COVID-19 in India. We performed a demographic characterization of COVID-19 cases in Indian population diagnosed with SARS-CoV-2 genomic sequencing for delta variant. ObjectiveTo determine demographic characteristics of delta variant in terms of age and sex, severity of the illness and mortality rate, and post-vaccination infections. DesignA cross sectional study SettingDemographic characteristics, including vaccination status (for two complete doses) and severity of the illness and mortality rate, of COVID-19 cases caused by wild type strain (B.1) and delta variant (B.1.617.2) of SARS-CoV-2 in Indian population were studied. ParticipantsCOVID-19 cases for which SARS-CoV-2 genomic sequencing was performed and complete demographic details (age, sex, and location) were available, were included. ExposuresSARS-CoV-2 infection with Delta (B.1.617.2) variant and wild type (B.1) strain. Main Outcomes and MeasuresThe patient metadata containing details for demographic and vaccination status (two complete doses) of the COVID-19 patients with confirmed delta variant and WT (B.1) infections were analyzed [total number of cases (N) =9500, Ndelta=6238, NWT=3262]. Further, severity of the illness and mortality were assessed in subsets of patients. Final data were tabulated and statistically analyzed to determine age and sex based differences in chances of getting infection and the severity of illness, and post-vaccination infections were compared between wild type and delta variant strains. Graphs were plotted to visualize the trends. ResultsWith delta variant, in comparison to wild type (B.1) strain, higher proportion of lower age groups, particularly <20 year (0-9 year: 4.47% vs. 2.3%, 10-19 year: 9% vs. 7%) were affected. The proportion of women contracting infection were increased (41% vs. 36%). The higher proportion of total young (0-19 year, 10% vs. 4%) (p=.017) population and young (14% vs. 3%) as well as adult (20-59 year, 75% vs. 55%) women developed symptoms/hospitalized with delta variant in comparison to B.1 infection (p< .00001). The mean age of contracting infection [Delta, men=37.9 ({+/-}17.2) year, women=36.6 ({+/-}17.6) year; B.1, men=39.6 ({+/-}16.9) year and women= 40.1 ({+/-}17.4) year (p< .001)] as well as developing symptoms/hospitalization [Delta, men=39.6({+/-} 17.4) year, women=35.6 ({+/-}16.9) year; B.1, men=47({+/-}18) year and women= 49.5({+/-}20.9) year (p< .001)] was considerably lower. The total mortality was about 1.8 times higher (13% vs. 7%). Risk of death increased irrespective of the sex (Odds ratio: 3.034, 95% Confidence Interval: 1.7-5.2, p<0.001), however, increased proportion of women (32% vs. 25%) were died. Further, multiple incidences of delta infections were noted following complete vaccination. Conclusions and RelevanceThe increased involvement of young (0-19 year) and women, lower mean age for contracting infection and symptomatic illness/hospitalization, higher mortality, and frequent incidences of post-vaccination infections with delta variant compared to wild type strain raises significant epidemiological concerns. Key PointsO_ST_ABSQuestionC_ST_ABSDid SARS-CoV-2 B.1.617.2 (Delta) variant infections show varied demographic characteristics in comparison to wild type strains? FindingsIn this cross sectional study viral genomic sequences of 9500 COVID-19 patients were analyzed. As the key findings, increased involvement of young (0-19 year) and women, lower mean age for contracting infection and symptomatic illness/hospitalization, higher mortality, and frequent incidences of post-vaccination infections with delta variant in comparison to wild type (WT) strain (B.1) were observed. MeaningThe findings of this study suggest that delta variant has varied demographic characteristics reflecting increased involvement of the young and women, and increased lethality in comparison to wild type strains.

6 citations

References
More filters
Journal ArticleDOI
16 Apr 2020-Cell
TL;DR: It is demonstrated that SARS-CoV-2 uses the SARS -CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming, and it is shown that the sera from convalescent SARS patients cross-neutralized Sars-2-S-driven entry.

15,362 citations

Journal ArticleDOI
08 Jul 2020-Nature
TL;DR: A range of clinical factors associated with COVID-19-related death is quantified in one of the largest cohort studies on this topic so far and includes people of white ethnicity, Black and South Asian people were at higher risk, even after adjustment for other factors.
Abstract: Coronavirus disease 2019 (COVID-19) has rapidly affected mortality worldwide1. There is unprecedented urgency to understand who is most at risk of severe outcomes, and this requires new approaches for the timely analysis of large datasets. Working on behalf of NHS England, we created OpenSAFELY-a secure health analytics platform that covers 40% of all patients in England and holds patient data within the existing data centre of a major vendor of primary care electronic health records. Here we used OpenSAFELY to examine factors associated with COVID-19-related death. Primary care records of 17,278,392 adults were pseudonymously linked to 10,926 COVID-19-related deaths. COVID-19-related death was associated with: being male (hazard ratio (HR) 1.59 (95% confidence interval 1.53-1.65)); greater age and deprivation (both with a strong gradient); diabetes; severe asthma; and various other medical conditions. Compared with people of white ethnicity, Black and South Asian people were at higher risk, even after adjustment for other factors (HR 1.48 (1.29-1.69) and 1.45 (1.32-1.58), respectively). We have quantified a range of clinical factors associated with COVID-19-related death in one of the largest cohort studies on this topic so far. More patient records are rapidly being added to OpenSAFELY, we will update and extend our results regularly.

4,263 citations

Journal ArticleDOI
28 May 2020-Cell
TL;DR: It is proposed that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.

3,286 citations

Journal ArticleDOI
TL;DR: It is emphasized that sex is a biological variable that should be considered in immunological studies and contribute to variations in the incidence of autoimmune diseases and malignancies, susceptibility to infectious diseases and responses to vaccines in males and females.
Abstract: Males and females differ in their immunological responses to foreign and self-antigens and show distinctions in innate and adaptive immune responses. Certain immunological sex differences are present throughout life, whereas others are only apparent after puberty and before reproductive senescence, suggesting that both genes and hormones are involved. Furthermore, early environmental exposures influence the microbiome and have sex-dependent effects on immune function. Importantly, these sex-based immunological differences contribute to variations in the incidence of autoimmune diseases and malignancies, susceptibility to infectious diseases and responses to vaccines in males and females. Here, we discuss these differences and emphasize that sex is a biological variable that should be considered in immunological studies.

3,214 citations

Journal ArticleDOI
Paul Bastard1, Paul Bastard2, Paul Bastard3, Lindsey B. Rosen4, Qian Zhang3, Eleftherios Michailidis3, Hans-Heinrich Hoffmann3, Yu Zhang4, Karim Dorgham2, Quentin Philippot2, Quentin Philippot1, Jérémie Rosain2, Jérémie Rosain1, Vivien Béziat3, Vivien Béziat1, Vivien Béziat2, Jeremy Manry2, Jeremy Manry1, Elana Shaw4, Liis Haljasmägi5, Pärt Peterson5, Lazaro Lorenzo2, Lazaro Lorenzo1, Lucy Bizien1, Lucy Bizien2, Sophie Trouillet-Assant6, Kerry Dobbs4, Adriana Almeida de Jesus4, Alexandre Belot6, Anne Kallaste7, Emilie Catherinot, Yacine Tandjaoui-Lambiotte1, Jérémie Le Pen3, Gaspard Kerner1, Gaspard Kerner2, Benedetta Bigio3, Yoann Seeleuthner1, Yoann Seeleuthner2, Rui Yang3, Alexandre Bolze, András N Spaan3, András N Spaan8, Ottavia M. Delmonte4, Michael S. Abers4, Alessandro Aiuti9, Giorgio Casari9, Vito Lampasona9, Lorenzo Piemonti9, Fabio Ciceri9, Kaya Bilguvar10, Richard P. Lifton10, Richard P. Lifton3, Marc Vasse, David M. Smadja2, Mélanie Migaud1, Mélanie Migaud2, Jérôme Hadjadj2, Benjamin Terrier2, Darragh Duffy11, Lluis Quintana-Murci11, Lluis Quintana-Murci12, Diederik van de Beek13, Lucie Roussel14, Donald C. Vinh14, Stuart G. Tangye15, Stuart G. Tangye16, Filomeen Haerynck17, David Dalmau18, Javier Martinez-Picado19, Javier Martinez-Picado20, Petter Brodin21, Petter Brodin22, Michel C. Nussenzweig23, Michel C. Nussenzweig3, Stéphanie Boisson-Dupuis2, Stéphanie Boisson-Dupuis3, Stéphanie Boisson-Dupuis1, Carlos Rodríguez-Gallego, Guillaume Vogt2, Trine H. Mogensen24, Trine H. Mogensen25, Andrew J. Oler4, Jingwen Gu4, Peter D. Burbelo4, Jeffrey I. Cohen4, Andrea Biondi26, Laura Rachele Bettini26, Mariella D'Angiò26, Paolo Bonfanti26, Patrick Rossignol27, Julien Mayaux2, Frédéric Rieux-Laucat2, Eystein S. Husebye28, Eystein S. Husebye29, Eystein S. Husebye30, Francesca Fusco, Matilde Valeria Ursini, Luisa Imberti31, Alessandra Sottini31, Simone Paghera31, Eugenia Quiros-Roldan32, Camillo Rossi, Riccardo Castagnoli33, Daniela Montagna33, Amelia Licari33, Gian Luigi Marseglia33, Xavier Duval, Jade Ghosn2, Hgid Lab4, Covid Clinicians5, Covid-Storm Clinicians§4, CoV-Contact Cohort§2, Amsterdam Umc Covid Biobank3, Amsterdam Umc Covid Biobank1, Amsterdam Umc Covid Biobank2, Covid Human Genetic Effort3, John S. Tsang4, Raphaela Goldbach-Mansky4, Kai Kisand5, Michail S. Lionakis4, Anne Puel1, Anne Puel2, Anne Puel3, Shen-Ying Zhang3, Shen-Ying Zhang2, Shen-Ying Zhang1, Steven M. Holland4, Guy Gorochov2, Emmanuelle Jouanguy3, Emmanuelle Jouanguy2, Emmanuelle Jouanguy1, Charles M. Rice3, Aurélie Cobat3, Aurélie Cobat2, Aurélie Cobat1, Luigi D. Notarangelo4, Laurent Abel2, Laurent Abel1, Laurent Abel3, Helen C. Su4, Jean-Laurent Casanova 
23 Oct 2020-Science
TL;DR: A means by which individuals at highest risk of life-threatening COVID-19 can be identified is identified, and the hypothesis that neutralizing auto-Abs against type I IFNs may underlie critical CO VID-19 is tested.
Abstract: Interindividual clinical variability in the course of SARS-CoV-2 infection is immense. We report that at least 101 of 987 patients with life-threatening COVID-19 pneumonia had neutralizing IgG auto-Abs against IFN-ω (13 patients), the 13 types of IFN-α (36), or both (52), at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1,227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 were men. A B cell auto-immune phenocopy of inborn errors of type I IFN immunity underlies life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.

1,913 citations