scispace - formally typeset
Search or ask a question
Journal ArticleDOI

COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis.

TL;DR: The Open Reading Frame 1ab of COVID‐2019 has been analyzed to evidence the presence of mutation caused by selective pressure on the virus, and the stabilizing mutation falling in the endosome‐associated‐protein‐like domain of the nsp2 protein could account for CO VID‐2019 high ability of contagious, while the destabilizing mutation in nsp3 proteins could suggest a potential mechanism differentiating COVID•2019 from SARS.
Abstract: Last December 2019, a new virus, named novel Coronavirus (COVID-2019) causing many cases of severe pneumonia was reported in Wuhan, China. The virus knowledge is limited and especially about COVID-2019 pathogenesis. The Open Reading Frame 1ab (ORF1ab) of COVID-2019 has been analyzed to evidence the presence of mutation caused by selective pressure on the virus. For selective pressure analysis fast-unconstrained Bayesian approximation (FUBAR) was used. Homology modelling has been performed by SwissModel and HHPred servers. The presence of transmembrane helical segments in Coronavirus ORF1ab non structural protein 2 (nsp2) and nsp3 was tested by TMHMM, MEMSAT, and MEMPACK tools. Three-dimensional structures have been analyzed and displayed using PyMOL. FUBAR analysis revealed the presence of potential sites under positive selective pressure (P < .05). Position 723 in the COVID-2019 has a serine instead a glycine residue, while at aminoacidic position 1010 a proline instead an isoleucine. Significant (P < .05) pervasive negative selection in 2416 sites (55%) was found. The positive selective pressure could account for some clinical features of this virus compared with severe acute respiratory syndrome (SARS) and Bat SARS-like CoV. The stabilizing mutation falling in the endosome-associated-protein-like domain of the nsp2 protein could account for COVID-2019 high ability of contagious, while the destabilizing mutation in nsp3 proteins could suggest a potential mechanism differentiating COVID-2019 from SARS. These data could be helpful for further investigation aimed to identify potential therapeutic targets or vaccine strategy, especially in the actual moment when the epidemic is ongoing and the scientific community is trying to enrich knowledge about this new viral pathogen.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
David E. Gordon, Gwendolyn M. Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Kris M. White1, Matthew J. O’Meara2, Veronica V. Rezelj3, Jeffrey Z. Guo, Danielle L. Swaney, Tia A. Tummino4, Ruth Hüttenhain, Robyn M. Kaake, Alicia L. Richards, Beril Tutuncuoglu, Helene Foussard, Jyoti Batra, Kelsey M. Haas, Maya Modak, Minkyu Kim, Paige Haas, Benjamin J. Polacco, Hannes Braberg, Jacqueline M. Fabius, Manon Eckhardt, Margaret Soucheray, Melanie J. Bennett, Merve Cakir, Michael McGregor, Qiongyu Li, Bjoern Meyer3, Ferdinand Roesch3, Thomas Vallet3, Alice Mac Kain3, Lisa Miorin1, Elena Moreno1, Zun Zar Chi Naing, Yuan Zhou, Shiming Peng4, Ying Shi, Ziyang Zhang, Wenqi Shen, Ilsa T Kirby, James E. Melnyk, John S. Chorba, Kevin Lou, Shizhong Dai, Inigo Barrio-Hernandez5, Danish Memon5, Claudia Hernandez-Armenta5, Jiankun Lyu4, Christopher J.P. Mathy, Tina Perica4, Kala Bharath Pilla4, Sai J. Ganesan4, Daniel J. Saltzberg4, Rakesh Ramachandran4, Xi Liu4, Sara Brin Rosenthal6, Lorenzo Calviello4, Srivats Venkataramanan4, Jose Liboy-Lugo4, Yizhu Lin4, Xi Ping Huang7, Yongfeng Liu7, Stephanie A. Wankowicz, Markus Bohn4, Maliheh Safari4, Fatima S. Ugur, Cassandra Koh3, Nastaran Sadat Savar3, Quang Dinh Tran3, Djoshkun Shengjuler3, Sabrina J. Fletcher3, Michael C. O’Neal, Yiming Cai, Jason C.J. Chang, David J. Broadhurst, Saker Klippsten, Phillip P. Sharp4, Nicole A. Wenzell4, Duygu Kuzuoğlu-Öztürk4, Hao-Yuan Wang4, Raphael Trenker4, Janet M. Young8, Devin A. Cavero9, Devin A. Cavero4, Joseph Hiatt4, Joseph Hiatt9, Theodore L. Roth, Ujjwal Rathore9, Ujjwal Rathore4, Advait Subramanian4, Julia Noack4, Mathieu Hubert3, Robert M. Stroud4, Alan D. Frankel4, Oren S. Rosenberg, Kliment A. Verba4, David A. Agard4, Melanie Ott, Michael Emerman8, Natalia Jura, Mark von Zastrow, Eric Verdin4, Eric Verdin10, Alan Ashworth4, Olivier Schwartz3, Christophe d'Enfert3, Shaeri Mukherjee4, Matthew P. Jacobson4, Harmit S. Malik8, Danica Galonić Fujimori, Trey Ideker6, Charles S. Craik, Stephen N. Floor4, James S. Fraser4, John D. Gross4, Andrej Sali, Bryan L. Roth7, Davide Ruggero, Jack Taunton4, Tanja Kortemme, Pedro Beltrao5, Marco Vignuzzi3, Adolfo García-Sastre, Kevan M. Shokat, Brian K. Shoichet4, Nevan J. Krogan 
30 Apr 2020-Nature
TL;DR: A human–SARS-CoV-2 protein interaction map highlights cellular processes that are hijacked by the virus and that can be targeted by existing drugs, including inhibitors of mRNA translation and predicted regulators of the sigma receptors.
Abstract: A newly described coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than 160,000 individuals and caused worldwide social and economic disruption1,2. There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins that physically associated with each of the SARS-CoV-2 proteins using affinity-purification mass spectrometry, identifying 332 high-confidence protein–protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors. Further studies of these host-factor-targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19. A human–SARS-CoV-2 protein interaction map highlights cellular processes that are hijacked by the virus and that can be targeted by existing drugs, including inhibitors of mRNA translation and predicted regulators of the sigma receptors.

3,319 citations

Journal ArticleDOI
TL;DR: The latest research progress of the epidemiology, pathogenesis, and clinical characteristics of COVID-19 are summarized, and the current treatment and scientific advancements to combat the epidemic novel coronavirus are discussed.
Abstract: An acute respiratory disease, caused by a novel coronavirus (SARS-CoV-2, previously known as 2019-nCoV), the coronavirus disease 2019 (COVID-19) has spread throughout China and received worldwide attention. On 30 January 2020, World Health Organization (WHO) officially declared the COVID-19 epidemic as a public health emergency of international concern. The emergence of SARS-CoV-2, since the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, marked the third introduction of a highly pathogenic and large-scale epidemic coronavirus into the human population in the twenty-first century. As of 1 March 2020, a total of 87,137 confirmed cases globally, 79,968 confirmed in China and 7169 outside of China, with 2977 deaths (3.4%) had been reported by WHO. Meanwhile, several independent research groups have identified that SARS-CoV-2 belongs to β-coronavirus, with highly identical genome to bat coronavirus, pointing to bat as the natural host. The novel coronavirus uses the same receptor, angiotensin-converting enzyme 2 (ACE2) as that for SARS-CoV, and mainly spreads through the respiratory tract. Importantly, increasingly evidence showed sustained human-to-human transmission, along with many exported cases across the globe. The clinical symptoms of COVID-19 patients include fever, cough, fatigue and a small population of patients appeared gastrointestinal infection symptoms. The elderly and people with underlying diseases are susceptible to infection and prone to serious outcomes, which may be associated with acute respiratory distress syndrome (ARDS) and cytokine storm. Currently, there are few specific antiviral strategies, but several potent candidates of antivirals and repurposed drugs are under urgent investigation. In this review, we summarized the latest research progress of the epidemiology, pathogenesis, and clinical characteristics of COVID-19, and discussed the current treatment and scientific advancements to combat the epidemic novel coronavirus.

3,277 citations


Additional excerpts

  • ...Another recent research suggested [23] that...

    [...]

Journal ArticleDOI
TL;DR: Analysis of epidemiological, diagnostic, clinical, and therapeutic aspects, including perspectives of vaccines and preventive measures that have already been globally recommended to counter this pandemic virus, suggest that this novel virus has been transferred from an animal source, such as bats.
Abstract: SUMMARYIn recent decades, several new diseases have emerged in different geographical areas, with pathogens including Ebola virus, Zika virus, Nipah virus, and coronaviruses (CoVs). Recently, a new type of viral infection emerged in Wuhan City, China, and initial genomic sequencing data of this virus do not match with previously sequenced CoVs, suggesting a novel CoV strain (2019-nCoV), which has now been termed severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Although coronavirus disease 2019 (COVID-19) is suspected to originate from an animal host (zoonotic origin) followed by human-to-human transmission, the possibility of other routes should not be ruled out. Compared to diseases caused by previously known human CoVs, COVID-19 shows less severe pathogenesis but higher transmission competence, as is evident from the continuously increasing number of confirmed cases globally. Compared to other emerging viruses, such as Ebola virus, avian H7N9, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 has shown relatively low pathogenicity and moderate transmissibility. Codon usage studies suggest that this novel virus has been transferred from an animal source, such as bats. Early diagnosis by real-time PCR and next-generation sequencing has facilitated the identification of the pathogen at an early stage. Since no antiviral drug or vaccine exists to treat or prevent SARS-CoV-2, potential therapeutic strategies that are currently being evaluated predominantly stem from previous experience with treating SARS-CoV, MERS-CoV, and other emerging viral diseases. In this review, we address epidemiological, diagnostic, clinical, and therapeutic aspects, including perspectives of vaccines and preventive measures that have already been globally recommended to counter this pandemic virus.

1,011 citations


Cites background from "COVID-2019: The role of the nsp2 an..."

  • ...in SARS-CoV-2 could indicate a potential mechanism that differentiates it from other CoVs (100)....

    [...]

Cascella M, Rajnik M, Cuomo A, Dulebohn Sc, Di Napoli R1 
10 Mar 2020
TL;DR: The SARS-CoV-2 virus, a novel virus belonging to the coronavirus (CoV) family, has become the major pathogens of emerging respiratory disease outbreaks and has quickly spread globally.
Abstract: According to the World Health Organization (WHO), viral diseases continue to emerge and represent a serious issue to public health. In the last twenty years, several viral epidemics such as the severe acute respiratory syndrome coronavirus (SARS-CoV) from 2002 to 2003, and H1N1 influenza in 2009, have been recorded. Most recently, the Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in Saudi Arabia in 2012.In a timeline that reaches the present day, an epidemic of cases with unexplained low respiratory infections detected in Wuhan, the largest metropolitan area in China's Hubei province, was first reported to the WHO Country Office in China, on December 31, 2019. Published literature can trace the beginning of symptomatic individuals back to the beginning of December 2019. As they were unable to identify the causative agent, these first cases (n=29) were classified as "pneumonia of unknown etiology." The Chinese Center for Disease Control and Prevention (CDC) and local CDCs organized an intensive outbreak investigation program. The etiology of this illness was attributed to a novel virus belonging to the coronavirus (CoV) family.On February 11, 2020, the WHO Director-General, Dr. Tedros Adhanom Ghebreyesus, announced that the disease caused by this new CoV was a "COVID-19," which is the acronym of "coronavirus disease 2019". In the past twenty years, two additional CoVs epidemics have occurred. SARS-CoV provoked a large-scale epidemic beginning in China and involving two dozen countries with approximately 8000 cases and 800 deaths (fatality rate of 9,6%), and the MERS-CoV that began in Saudi Arabia and has approximately 2,500 cases and 800 deaths (fatality rate of 35%) and still causes as sporadic cases.This new virus is very contagious and has quickly spread globally. In a meeting on January 30, 2020, per the International Health Regulations (IHR, 2005), the outbreak was declared by the WHO a Public Health Emergency of International Concern (PHEIC) as it had spread to 18 countries with four countries reporting human-to-human transmission. An additional landmark occurred on February 26, 2020, as the first case of the disease, not imported from China, was recorded in the United States (US).Initially, the new virus was called 2019-nCoV. Subsequently, the task of experts of the International Committee on Taxonomy of Viruses (ICTV) termed it the SARS-CoV-2 virus as it is very similar to the one that caused the SARS outbreak (SARS-CoVs).The CoVs have become the major pathogens of emerging respiratory disease outbreaks. They are a large family of single-stranded RNA viruses (+ssRNA) that can be isolated in different animal species. For reasons yet to be explained, these viruses can cross species barriers and can cause, in humans, illness ranging from the common cold to more severe diseases such as MERS and SARS. Interestingly, these latter viruses have probably originated from bats and then moving into other mammalian hosts — the Himalayan palm civet for SARS-CoV, and the dromedary camel for MERS-CoV — before jumping to humans. The dynamics of SARS-Cov-2 are currently unknown, but there is speculation that it also has an animal origin.The potential for these viruses to grow to become a pandemic worldwide represents a serious public health risk. Concerning COVID-19, the WHO raised the threat to the CoV epidemic to the "very high" level, on February 28, 2020. On March 11, as the number of COVID-19 cases outside China has increased 13 times and the number of countries involved has tripled with more than 118,000 cases in 114 countries and over 4,000 deaths, WHO declared the COVID-19 a pandemic.World governments are at work to establish countermeasures to stem the devastating effects and it has been estimated that strict shutdowns may have saved 3 million lives across 11 European countries. Health organizations coordinate information flows and issues directives and guidelines to best mitigate the impact of the threat. At the same time, scientists around the world work tirelessly, and information about the transmission mechanisms, the clinical spectrum of disease, new diagnostics, and prevention and therapeutic strategies are rapidly developing. Many uncertainties remain with regard to both the virus-host interaction and the evolution of the pandemic, with specific reference to the times when it will reach its peak.At the moment, the therapeutic strategies to deal with the infection are only supportive, and prevention aimed at reducing transmission in the community is our best weapon. Aggressive isolation measures in China have led to a progressive reduction of cases. From China, the disease spread to Europe. In Italy, in geographic regions of the north, initially, and subsequently throughout the peninsula, political and health authorities have made incredible efforts to contain a shock wave that has severely tested the health system. Afterward, the COVID-19 quickly crossed the ocean and as of June 20, 2020, about 2,282,000 cases (with 121,000 deaths) have been recorded in the US, whereas Brazil with more than 1,000,000 cases and about 50,000 deaths is the most affected state in South America and the second in the world after the US. Although over time the lethality rate (total number of deaths for a given disease in relation to the total number of patients) of COVID-19 has been significantly lower than that of the SARS and MERS epidemics, the transmission of the SARS-CoV-2 virus is much larger than that of the previous viruses, with a much higher total number of deaths. It has been estimated that about one in five individuals worldwide could be at increased risk of severe COVID-19 disease if they become infected, due to underlying health conditions.In the midst of the crisis, the authors have chosen to use the "Statpearls" platform because, within the PubMed scenario, it represents a unique tool that may allow them to make updates in real-time. The aim, therefore, is to collect information and scientific evidence and to provide an overview of the topic that will be continuously updated.

540 citations

Journal ArticleDOI
TL;DR: The structure of virus; varying symptoms among COVID-19, SARS, MERS and common flu; the probable mechanism behind the infection and its immune response; and traditional Indian medicinal plants as possible novel therapeutic approaches, exclusively targeting SARS-CoV-2 and its pathways are discussed.

478 citations

References
More filters
Journal ArticleDOI
TL;DR: The epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of patients with laboratory-confirmed 2019-nCoV infection in Wuhan, China, were reported.

36,578 citations

Journal ArticleDOI
TL;DR: Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily, which is the seventh member of the family of coronaviruses that infect humans.
Abstract: In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.).

21,455 citations

Journal ArticleDOI
TL;DR: An update to the SWISS-MODEL server is presented, which includes the implementation of a new modelling engine, ProMod3, and the introduction a new local model quality estimation method, QMEANDisCo.
Abstract: Homology modelling has matured into an important technique in structural biology, significantly contributing to narrowing the gap between known protein sequences and experimentally determined structures. Fully automated workflows and servers simplify and streamline the homology modelling process, also allowing users without a specific computational expertise to generate reliable protein models and have easy access to modelling results, their visualization and interpretation. Here, we present an update to the SWISS-MODEL server, which pioneered the field of automated modelling 25 years ago and been continuously further developed. Recently, its functionality has been extended to the modelling of homo- and heteromeric complexes. Starting from the amino acid sequences of the interacting proteins, both the stoichiometry and the overall structure of the complex are inferred by homology modelling. Other major improvements include the implementation of a new modelling engine, ProMod3 and the introduction a new local model quality estimation method, QMEANDisCo. SWISS-MODEL is freely available at https://swissmodel.expasy.org.

7,022 citations

Journal ArticleDOI
TL;DR: A stand-alone I-TASSER Suite that can be used for off-line protein structure and function prediction and three complementary algorithms to enhance function inferences are developed, the consensus of which is derived by COACH4 using support vector machines.
Abstract: The lowest free-energy conformations are identified by structure clustering. A second round of assembly simulation is conducted, starting from the centroid models, to remove steric clashes and refine global topology. Final atomic structure models are constructed from the low-energy conformations by a two-step atomic-level energy minimization approach. The correctness of the global model is assessed by the confidence score, which is based on the significance of threading alignments and the density of structure clustering; the residue-level local quality of the structural models and B factor of the target protein are evaluated by a newly developed method, ResQ, built on the variation of modeling simulations and the uncertainty of homologous alignments through support vector regression training. For function annotation, the structure models with the highest confidence scores are matched against the BioLiP5 database of ligand-protein interactions to detect homologous function templates. Functional insights on ligand-binding site (LBS), Enzyme Commission (EC) and Gene Ontology (GO) are deduced from the functional templates. We developed three complementary algorithms (COFACTOR, TM-SITE and S-SITE) to enhance function inferences, the consensus of which is derived by COACH4 using support vector machines. Detailed instructions for installation, implementation and result interpretation of the Suite can be found in the Supplementary Methods and Supplementary Tables 1 and 2. The I-TASSER Suite pipeline was tested in recent communitywide structure and function prediction experiments, including CASP10 (ref. 1) and CAMEO2. Overall, I-TASSER generated the correct fold with a template modeling score (TM-score) >0.5 for 10 out of 36 “New Fold” (NF) targets in the CASP10, which have no homologous templates in the Protein Data Bank (PDB). Of the 110 template-based modeling targets, 92 had a TM-score >0.5, and 89 had the templates drawn closer to the native with an average r.m.s. deviation improvement of 1.05 Å in the same threadingaligned regions6. In CAMEO, COACH generated LBS predictions for 4,271 targets with an average accuracy 0.86, which was 20% higher than that of the second-best method in the experiment. Here we illustrate I-TASSER Suite–based structure and function modeling using six examples (Fig. 1b–g) from the communitywide blind tests1,2. R0006 and R0007 are two NF targets from CASP10, and I-TASSER constructed models of correct fold with a TM-score of 0.62 for both targets (Fig. 1b,c). An illustration of local quality estimation by ResQ is shown for T0652, which has an average error 0.75 Å compared to the actual deviation of the model from the native (Fig. 1h). The four LBS prediction examples (Fig. 1d–g) are from CASP10 (ref. 1) and CAMEO2; COACH generated ligand models all with a ligand r.m.s. deviation below 2 Å. COACH also correctly assigned the threeand fourdigit EC numbers to the enzyme targets C0050 and C0046 (Supplementary Table 3). In summary, we developed a stand-alone I-TASSER Suite that can be used for off-line protein structure and function prediction. The I-TASSER Suite: protein structure and function prediction

4,693 citations

Related Papers (5)
Trending Questions (1)
What is the second mutation of Covid?

The stabilizing mutation falling in the endosome‐associated‐protein‐like domain of the nsp2 protein could account for COVID‐2019 high ability of contagious, while the destabilizing mutation in nsp3 proteins could suggest a potential mechanism differentiating COVID‐2019 from SARS.