scispace - formally typeset
Open AccessJournal ArticleDOI

COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images.

Linda Wang, +2 more
- 11 Nov 2020 - 
- Vol. 10, Iss: 1, pp 19549-19549
Reads0
Chats0
TLDR
COVID-Net is introduced, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images that is open source and available to the general public, and COVIDx, an open access benchmark dataset comprising of 13,975 CXR images across 13,870 patient patient cases.
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiology examination using chest radiography. It was found in early studies that patients present abnormalities in chest radiography images that are characteristic of those infected with COVID-19. Motivated by this and inspired by the open source efforts of the research community, in this study we introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images that is open source and available to the general public. To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images at the time of initial release. We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases, with the largest number of publicly available COVID-19 positive cases to the best of the authors' knowledge. Furthermore, we investigate how COVID-Net makes predictions using an explainability method in an attempt to not only gain deeper insights into critical factors associated with COVID cases, which can aid clinicians in improved screening, but also audit COVID-Net in a responsible and transparent manner to validate that it is making decisions based on relevant information from the CXR images. By no means a production-ready solution, the hope is that the open access COVID-Net, along with the description on constructing the open source COVIDx dataset, will be leveraged and build upon by both researchers and citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate treatment of those who need it the most.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Automated detection of COVID-19 cases using deep neural networks with X-ray images.

TL;DR: A new model for automatic COVID-19 detection using raw chest X-ray images is presented and can be employed to assist radiologists in validating their initial screening, and can also be employed via cloud to immediately screen patients.
Journal ArticleDOI

CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images.

TL;DR: The proposed CoroNet, a Deep Convolutional Neural Network model to automatically detect COVID-19 infection from chest X-ray images achieves promising results on a small prepared dataset which indicates that given more data, the proposed model can achieve better results with minimum pre-processing of data.
Journal ArticleDOI

Deep Learning COVID-19 Features on CXR Using Limited Training Data Sets

TL;DR: Experimental results show that the proposed patch-based convolutional neural network approach achieves state-of-the-art performance and provides clinically interpretable saliency maps, which are useful for COVID-19 diagnosis and patient triage.
Journal ArticleDOI

Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network.

TL;DR: In this article, a deep CNN, called Decompose, Transfer, and Compose (DeTraC), was used for the classification of COVID-19 chest X-ray images.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Deep learning

TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Related Papers (5)