scispace - formally typeset
Search or ask a question
Posted Content

COVIDX-Net: A Framework of Deep Learning Classifiers to Diagnose COVID-19 in X-Ray Images.

TL;DR: This study demonstrated the useful application of deep learning models to classify COVID-19 in X-ray images based on the proposed COVIDX-Net framework and indicated that clinical studies are the next milestone of this research work.
Abstract: Background and Purpose: Coronaviruses (CoV) are perilous viruses that may cause Severe Acute Respiratory Syndrome (SARS-CoV), Middle East Respiratory Syndrome (MERS-CoV). The novel 2019 Coronavirus disease (COVID-19) was discovered as a novel disease pneumonia in the city of Wuhan, China at the end of 2019. Now, it becomes a Coronavirus outbreak around the world, the number of infected people and deaths are increasing rapidly every day according to the updated reports of the World Health Organization (WHO). Therefore, the aim of this article is to introduce a new deep learning framework; namely COVIDX-Net to assist radiologists to automatically diagnose COVID-19 in X-ray images. Materials and Methods: Due to the lack of public COVID-19 datasets, the study is validated on 50 Chest X-ray images with 25 confirmed positive COVID-19 cases. The COVIDX-Net includes seven different architectures of deep convolutional neural network models, such as modified Visual Geometry Group Network (VGG19) and the second version of Google MobileNet. Each deep neural network model is able to analyze the normalized intensities of the X-ray image to classify the patient status either negative or positive COVID-19 case. Results: Experiments and evaluation of the COVIDX-Net have been successfully done based on 80-20% of X-ray images for the model training and testing phases, respectively. The VGG19 and Dense Convolutional Network (DenseNet) models showed a good and similar performance of automated COVID-19 classification with f1-scores of 0.89 and 0.91 for normal and COVID-19, respectively. Conclusions: This study demonstrated the useful application of deep learning models to classify COVID-19 in X-ray images based on the proposed COVIDX-Net framework. Clinical studies are the next milestone of this research work.
Citations
More filters
Journal ArticleDOI
TL;DR: A new model for automatic COVID-19 detection using raw chest X-ray images is presented and can be employed to assist radiologists in validating their initial screening, and can also be employed via cloud to immediately screen patients.

1,868 citations


Cites background or methods from "COVIDX-Net: A Framework of Deep Lea..."

  • ...[41] proposed COVIDX-Net to diagnose COVID-19 in X-ray images....

    [...]

  • ...[41] Chest X-ray 25 COVID-19(+) 25 Normal COVIDX-Net 90....

    [...]

  • ...[41] used deep learning models to diagnose COVID-19 in X-ray images and proposed a COVIDX-Net model comprising seven CNN models....

    [...]

Journal ArticleDOI
TL;DR: The aim of this paper is to propose a robust technique for automatic detection of COVID-19 pneumonia from digital chest X-ray images applying pre-trained deep-learning algorithms while maximizing the detection accuracy.
Abstract: Coronavirus disease (COVID-19) is a pandemic disease, which has already caused thousands of causalities and infected several millions of people worldwide. Any technological tool enabling rapid screening of the COVID-19 infection with high accuracy can be crucially helpful to the healthcare professionals. The main clinical tool currently in use for the diagnosis of COVID-19 is the Reverse transcription polymerase chain reaction (RT-PCR), which is expensive, less-sensitive and requires specialized medical personnel. X-ray imaging is an easily accessible tool that can be an excellent alternative in the COVID-19 diagnosis. This research was taken to investigate the utility of artificial intelligence (AI) in the rapid and accurate detection of COVID-19 from chest X-ray images. The aim of this paper is to propose a robust technique for automatic detection of COVID-19 pneumonia from digital chest X-ray images applying pre-trained deep-learning algorithms while maximizing the detection accuracy. A public database was created by the authors combining several public databases and also by collecting images from recently published articles. The database contains a mixture of 423 COVID-19, 1485 viral pneumonia, and 1579 normal chest X-ray images. Transfer learning technique was used with the help of image augmentation to train and validate several pre-trained deep Convolutional Neural Networks (CNNs). The networks were trained to classify two different schemes: i) normal and COVID-19 pneumonia; ii) normal, viral and COVID-19 pneumonia with and without image augmentation. The classification accuracy, precision, sensitivity, and specificity for both the schemes were 99.7%, 99.7%, 99.7% and 99.55% and 97.9%, 97.95%, 97.9%, and 98.8%, respectively. The high accuracy of this computer-aided diagnostic tool can significantly improve the speed and accuracy of COVID-19 diagnosis. This would be extremely useful in this pandemic where disease burden and need for preventive measures are at odds with available resources.

1,117 citations

Journal ArticleDOI
TL;DR: Five pre-trained convolutional neural network-based models have been proposed for the detection of coronavirus pneumonia-infected patient using chest X-ray radiographs and it has been seen that the pre- trained ResNet50 model provides the highest classification performance.
Abstract: The 2019 novel coronavirus disease (COVID-19), with a starting point in China, has spread rapidly among people living in other countries, and is approaching approximately 34,986,502 cases worldwide according to the statistics of European Centre for Disease Prevention and Control. There are a limited number of COVID-19 test kits available in hospitals due to the increasing cases daily. Therefore, it is necessary to implement an automatic detection system as a quick alternative diagnosis option to prevent COVID-19 spreading among people. In this study, five pre-trained convolutional neural network based models (ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-ResNetV2) have been proposed for the detection of coronavirus pneumonia infected patient using chest X-ray radiographs. We have implemented three different binary classifications with four classes (COVID-19, normal (healthy), viral pneumonia and bacterial pneumonia) by using 5-fold cross validation. Considering the performance results obtained, it has seen that the pre-trained ResNet50 model provides the highest classification performance (96.1% accuracy for Dataset-1, 99.5% accuracy for Dataset-2 and 99.7% accuracy for Dataset-3) among other four used models.

1,040 citations


Cites methods from "COVIDX-Net: A Framework of Deep Lea..."

  • ...used VGG19 and DenseNet models to diagnose COVID-19 from X-ray images [24]....

    [...]

Journal ArticleDOI
TL;DR: The proposed CoroNet, a Deep Convolutional Neural Network model to automatically detect COVID-19 infection from chest X-ray images achieves promising results on a small prepared dataset which indicates that given more data, the proposed model can achieve better results with minimum pre-processing of data.

875 citations

Journal ArticleDOI
TL;DR: In this paper, five pre-trained convolutional neural network-based models were proposed for the detection of coronavirus pneumonia-infected patient using chest X-ray radiographs.
Abstract: The 2019 novel coronavirus disease (COVID-19), with a starting point in China, has spread rapidly among people living in other countries and is approaching approximately 101,917,147 cases worldwide according to the statistics of World Health Organization. There are a limited number of COVID-19 test kits available in hospitals due to the increasing cases daily. Therefore, it is necessary to implement an automatic detection system as a quick alternative diagnosis option to prevent COVID-19 spreading among people. In this study, five pre-trained convolutional neural network-based models (ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-ResNetV2) have been proposed for the detection of coronavirus pneumonia-infected patient using chest X-ray radiographs. We have implemented three different binary classifications with four classes (COVID-19, normal (healthy), viral pneumonia and bacterial pneumonia) by using five-fold cross-validation. Considering the performance results obtained, it has been seen that the pre-trained ResNet50 model provides the highest classification performance (96.1% accuracy for Dataset-1, 99.5% accuracy for Dataset-2 and 99.7% accuracy for Dataset-3) among other four used models.

769 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"COVIDX-Net: A Framework of Deep Lea..." refers methods in this paper

  • ...A) VGG19: Visual Geometry Group Network (VGG) was developed based on the convolutional neural network architecture by Oxford Robotics Institute's Karen Simonyan and Andrew Zisserman [34]....

    [...]

  • ...A) VGG19: Visual Geometry Group Network (VGG) was developed based on the convolutional neural network architecture by Oxford Robotics Institute's Karen Simonyan and Andrew Zisserman [34]....

    [...]

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: DenseNet as mentioned in this paper proposes to connect each layer to every other layer in a feed-forward fashion, which can alleviate the vanishing gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters.
Abstract: Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections—one between each layer and its subsequent layer—our network has L(L+1)/2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less memory and computation to achieve high performance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet.

27,821 citations

Journal ArticleDOI
TL;DR: Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily, which is the seventh member of the family of coronaviruses that infect humans.
Abstract: In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.).

21,455 citations


"COVIDX-Net: A Framework of Deep Lea..." refers background in this paper

  • ...The outbreak of the 2019 novel coronavirus in Wuhan, China has been rapidly spread to other countries since December 2019 [3-6]....

    [...]