scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Creation of helical Dirac fermions by interfacing two gapped systems of ordinary fermions

22 Jan 2013-Nature Communications (Nature Publishing Group)-Vol. 4, Iss: 1, pp 1384-1384
TL;DR: It is demonstrated, using density function theory calculations and experiments, that it is possible to create helical Dirac fermion state by interfacing two gapped films-a single bilayer Bi grown on a single quintuple layer Bi( 2)Se(3) or Bi(2)Te(3).
Abstract: Topological insulators are a unique class of materials characterized by a Dirac cone state of helical Dirac fermions in the middle of a bulk gap. When the thickness of a three-dimensional topological insulator is reduced, however, the interaction between opposing surface states opens a gap that removes the helical Dirac cone, converting the material back to a normal system of ordinary fermions. Here we demonstrate, using density function theory calculations and experiments, that it is possible to create helical Dirac fermion state by interfacing two gapped films-a single bilayer Bi grown on a single quintuple layer Bi(2)Se(3) or Bi(2)Te(3). These extrinsic helical Dirac fermions emerge in predominantly Bi bilayer states, which are created by a giant Rashba effect with a coupling constant of ~4 eV·A due to interfacial charge transfer. Our results suggest that this approach is a promising means to engineer topological insulator states on non-metallic surfaces.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors discuss the underpinnings of the topological band theory and its materials applications, and propose a framework for predicting new classes of topological materials.
Abstract: First-principles band theory, properly augmented by topological considerations, has provided a remarkably successful framework for predicting new classes of topological materials. This Colloquium discusses the underpinnings of the topological band theory and its materials applications.

1,179 citations


Cites background from "Creation of helical Dirac fermions ..."

  • ...(Weng, Zhao, et al. 2014) ARPES experiments on SmB6 show a spinpolarized surface state at Γ lying inside the bulk band gap (Denlinger et al. 2013) and X-centered electron-like bands spanning the gap, (Xu, Shi, et al. 2013; Neupane, Alidoust, et al. 2013; Jiang, Li, et al. 2013) including earlier hints of in-gap states....

    [...]

  • ...Here, Mott (Zhang, Zhang, Wang, et al. 2012; Deng, Haule, and Kotliar 2013) and Kondo insulators (Dzero et al. 2010; Weng, Zhao, et al. 2014) provide a natural breeding ground for finding correlated TIs....

    [...]

  • ...(Young et al. 2012; Wang, Sun, et al. 2012; Wang et al. 2013b) Weyl and 3D Dirac semimetal phases would have important applications including the realization of anomalous Hall effect (Yang, Lu, and Ran 2011; Burkov and Balents 2011b; Xu, Xia, et al. 2011), nontrivial electromagnetic responses…...

    [...]

  • ...(Dzero et al. 2010; Dzero et al. 2012; Kim, Xia, and Fisk 2014) Other predicted TKI’s include SmS, (Li, Li, et al. 2014; Zhao, Lu, et al. 2014) and YB6 and YB12 as topological Kondo crystalline insulators....

    [...]

  • ...(Sulaev et al. 2013) Pressure dependence of topological phase transitions in Ag2Te at room temperature is discussed by Zhao, Wang et al. (2013)....

    [...]

Journal ArticleDOI
24 Nov 2016-Nature
TL;DR: This work discusses SOC as a means of producing such fundamentally new physical phenomena in thin films and heterostructures and puts into context the technological promise of these material classes for developing spin-based device applications at room temperature.
Abstract: Spin–orbit coupling (SOC) describes the relativistic interaction between the spin and momentum degrees of freedom of electrons, and is central to the rich phenomena observed in condensed matter systems. In recent years, new phases of matter have emerged from the interplay between SOC and low dimensionality, such as chiral spin textures and spin-polarized surface and interface states. These low-dimensional SOC-based realizations are typically robust and can be exploited at room temperature. Here we discuss SOC as a means of producing such fundamentally new physical phenomena in thin films and heterostructures. We put into context the technological promise of these material classes for developing spin-based device applications at room temperature. The interplay between spin–orbit coupling and two-dimensionality has led to the emergence of new phases of matter, such as spin-polarized surface states in topological insulators, interfacial chiral spin interactions, and magnetic skyrmions in thin films, with great potential for spin-based devices. Substantial progress in the past decade in the fabrication and modelling of atomically precise interfaces and surfaces has led to the discovery of many electronic effects that are of interest for practical devices with novel functionalities. Christos Panagopoulos and colleagues review various such effects—and their technological potential—with a focus on the role of spin–orbit coupling, the fundamental interaction between the spin and charge degrees of freedom of an electron. Spin–orbit coupling can affect the electronic properties of materials at reduced dimensions, and the authors discuss the basic principles for understanding and engineering interfaces and surfaces in which spin–orbit coupling is harnessed. Examples are structures based on topological insulators where spin currents are generated or converted and magnetic layers where spin–orbit coupling leads to spin textures that can be controlled.

775 citations

Journal ArticleDOI
TL;DR: In this paper, a recently experimentally made 2D organometallic framework, consisting of π-conjugated nickel-bis-dithiolene with a chemical formula Ni3C12S12, was identified, which exhibits nontrivial topological states in both a Dirac band and a flat band, therefore confirming the existence of OTI.
Abstract: Topological insulators (TI) are a class of materials exhibiting unique quantum transport properties with potential applications in spintronics and quantum computing. To date, all of the experimentally confirmed TIs are inorganic materials. Recent theories predicted the possible existence of organic TIs (OTI) in two-dimensional (2D) organometallic frameworks. However, those theoretically proposed structures do not naturally exist and remain to be made in experiments. Here, we identify a recently experimentally made 2D organometallic framework, consisting of π-conjugated nickel-bis-dithiolene with a chemical formula Ni3C12S12, which exhibits nontrivial topological states in both a Dirac band and a flat band, therefore confirming the existence of OTI.

263 citations

Journal ArticleDOI
TL;DR: A family of two-dimensional organic topological insulators made of organometallic lattices is predicted, designed by assembling molecular building blocks of triphenyl-metal compounds with strong spin-orbit coupling into a hexagonal lattice, to exhibit nontrivial topological edge states that are robust against significant lattice strain.
Abstract: Topological insulators are a recently discovered class of materials having insulating bulk electronic states but conducting boundary states distinguished by nontrivial topology. So far, several generations of topological insulators have been theoretically predicted and experimentally confirmed, all based on inorganic materials. Here, based on first-principles calculations, we predict a family of two-dimensional organic topological insulators made of organometallic lattices. Designed by assembling molecular building blocks of triphenyl-metal compounds with strong spin-orbit coupling into a hexagonal lattice, this new classes of organic topological insulators are shown to exhibit nontrivial topological edge states that are robust against significant lattice strain. We envision that organic topological insulators will greatly broaden the scientific and technological impact of topological insulators. Topological insulators are bulk insulators with conductive boundary states, and until now have been based only on inorganic materials. Wang et al.use first-principles calculations to predict a class of organic topological insulators based on organometallic lattices exhibiting robust topological edge states.

248 citations

01 Mar 2014
TL;DR: This work identifies a recently experimentally made 2D organometallic framework, consisting of π-conjugated nickel-bis-dithiolene with a chemical formula Ni3C12S12, which exhibits nontrivial topological states in both a Dirac band and a flat band, therefore confirming the existence of OTI.
Abstract: Topological insulators (TI) are a class of materials exhibiting unique quantum transport properties with potential applications in spintronics and quantum computing. To date, all of the experimentally confirmed TIs are inorganic materials. Recent theories predicted the possible existence of organic TIs (OTI) in two-dimensional (2D) organometallic frameworks. However, those theoretically proposed structures do not naturally exist and remain to be made in experiments. Here, we identify a recently experimentally made 2D organometallic framework, consisting of π-conjugated nickel-bis-dithiolene with a chemical formula Ni3C12S12, which exhibits nontrivial topological states in both a Dirac band and a flat band, therefore confirming the existence of OTI.

228 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present an ab initio quantum-mechanical molecular-dynamics calculations based on the calculation of the electronic ground state and of the Hellmann-Feynman forces in the local density approximation.
Abstract: We present ab initio quantum-mechanical molecular-dynamics calculations based on the calculation of the electronic ground state and of the Hellmann-Feynman forces in the local-density approximation at each molecular-dynamics step. This is possible using conjugate-gradient techniques for energy minimization, and predicting the wave functions for new ionic positions using subspace alignment. This approach avoids the instabilities inherent in quantum-mechanical molecular-dynamics calculations for metals based on the use of a fictitious Newtonian dynamics for the electronic degrees of freedom. This method gives perfect control of the adiabaticity and allows us to perform simulations over several picoseconds.

32,798 citations

Journal ArticleDOI
TL;DR: In this paper, the theoretical foundation for topological insulators and superconductors is reviewed and recent experiments are described in which the signatures of topologically insulators have been observed.
Abstract: Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. These states are possible due to the combination of spin-orbit interactions and time-reversal symmetry. The two-dimensional (2D) topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum Hall state. A three-dimensional (3D) topological insulator supports novel spin-polarized 2D Dirac fermions on its surface. In this Colloquium the theoretical foundation for topological insulators and superconductors is reviewed and recent experiments are described in which the signatures of topological insulators have been observed. Transport experiments on $\mathrm{Hg}\mathrm{Te}∕\mathrm{Cd}\mathrm{Te}$ quantum wells are described that demonstrate the existence of the edge states predicted for the quantum spin Hall insulator. Experiments on ${\mathrm{Bi}}_{1\ensuremath{-}x}{\mathrm{Sb}}_{x}$, ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$, ${\mathrm{Bi}}_{2}{\mathrm{Te}}_{3}$, and ${\mathrm{Sb}}_{2}{\mathrm{Te}}_{3}$ are then discussed that establish these materials as 3D topological insulators and directly probe the topology of their surface states. Exotic states are described that can occur at the surface of a 3D topological insulator due to an induced energy gap. A magnetic gap leads to a novel quantum Hall state that gives rise to a topological magnetoelectric effect. A superconducting energy gap leads to a state that supports Majorana fermions and may provide a new venue for realizing proposals for topological quantum computation. Prospects for observing these exotic states are also discussed, as well as other potential device applications of topological insulators.

15,562 citations

Journal ArticleDOI
TL;DR: Graphene is converted from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator and the spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.
Abstract: We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supports the transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are nonchiral, but they are insensitive to disorder because their directionality is correlated with spin. The spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.

6,058 citations

Journal ArticleDOI
15 Dec 2006-Science
TL;DR: In this article, the quantum spin Hall (QSH) effect can be realized in mercury-cadmium telluride semiconductor quantum wells, a state of matter with topological properties distinct from those of conventional insulators.
Abstract: We show that the quantum spin Hall (QSH) effect, a state of matter with topological properties distinct from those of conventional insulators, can be realized in mercury telluride–cadmium telluride semiconductor quantum wells. When the thickness of the quantum well is varied, the electronic state changes from a normal to an “inverted” type at a critical thickness d c . We show that this transition is a topological quantum phase transition between a conventional insulating phase and a phase exhibiting the QSH effect with a single pair of helical edge states. We also discuss methods for experimental detection of the QSH effect.

5,187 citations

Journal ArticleDOI
TL;DR: In this article, first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Bi2Se3, SbSe3 and BiSe3 were performed.
Abstract: Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap of such systems are protected by time-reversal symmetry. The study of such states was originally inspired by the robustness to scattering of conducting edge states in quantum Hall systems. Recently, such analogies have resulted in the discovery of topologically protected states in two-dimensional and three-dimensional band insulators with large spin–orbit coupling. So far, the only known three-dimensional topological insulator is BixSb1−x, which is an alloy with complex surface states. Here, we present the results of first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Sb2Se3, Bi2Te3 and Bi2Se3. Our calculations predict that Sb2Te3, Bi2Te3 and Bi2Se3 are topological insulators, whereas Sb2Se3 is not. These topological insulators have robust and simple surface states consisting of a single Dirac cone at the Γ point. In addition, we predict that Bi2Se3 has a topologically non-trivial energy gap of 0.3 eV, which is larger than the energy scale of room temperature. We further present a simple and unified continuum model that captures the salient topological features of this class of materials. First-principles calculations predict that Bi2Se3, Bi2Te3 and Sb2Te3 are topological insulators—three-dimensional semiconductors with unusual surface states generated by spin–orbit coupling—whose surface states are described by a single gapless Dirac cone. The calculations further predict that Bi2Se3 has a non-trivial energy gap larger than the energy scale kBT at room temperature.

4,982 citations