scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Critical phenomena in complex networks

06 Oct 2008-Reviews of Modern Physics (American Physical Society)-Vol. 80, Iss: 4, pp 1275-1335
TL;DR: A wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, $k$-core percolations, phenomena near epidemic thresholds, condensation transitions,critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks are mentioned.
Abstract: The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, important steps have been made toward understanding the qualitatively new critical phenomena in complex networks. The results, concepts, and methods of this rapidly developing field are reviewed. Two closely related classes of these critical phenomena are considered, namely, structural phase transitions in the network architectures and transitions in cooperative models on networks as substrates. Systems where a network and interacting agents on it influence each other are also discussed. A wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, $k$-core percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks are mentioned. Strong finite-size effects in these systems and open problems and perspectives are also discussed.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
15 Apr 2010-Nature
TL;DR: In this paper, the authors develop a framework for understanding the robustness of interacting networks subject to cascading failures and present exact analytical solutions for the critical fraction of nodes that, on removal, will lead to a failure cascade and to a complete fragmentation of two interdependent networks.
Abstract: Complex networks have been studied intensively for a decade, but research still focuses on the limited case of a single, non-interacting network. Modern systems are coupled together and therefore should be modelled as interdependent networks. A fundamental property of interdependent networks is that failure of nodes in one network may lead to failure of dependent nodes in other networks. This may happen recursively and can lead to a cascade of failures. In fact, a failure of a very small fraction of nodes in one network may lead to the complete fragmentation of a system of several interdependent networks. A dramatic real-world example of a cascade of failures ('concurrent malfunction') is the electrical blackout that affected much of Italy on 28 September 2003: the shutdown of power stations directly led to the failure of nodes in the Internet communication network, which in turn caused further breakdown of power stations. Here we develop a framework for understanding the robustness of interacting networks subject to such cascading failures. We present exact analytical solutions for the critical fraction of nodes that, on removal, will lead to a failure cascade and to a complete fragmentation of two interdependent networks. Surprisingly, a broader degree distribution increases the vulnerability of interdependent networks to random failure, which is opposite to how a single network behaves. Our findings highlight the need to consider interdependent network properties in designing robust networks.

3,651 citations

Journal ArticleDOI
TL;DR: A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear.
Abstract: Complex networks arise in a wide range of biological and sociotechnical systems. Epidemic spreading is central to our understanding of dynamical processes in complex networks, and is of interest to physicists, mathematicians, epidemiologists, and computer and social scientists. This review presents the main results and paradigmatic models in infectious disease modeling and generalized social contagion processes.

3,173 citations


Cites background from "Critical phenomena in complex netwo..."

  • ...…is 15 equivalent to replacing the adjacency matrix in the IBMF theory by its ensemble average āij , annealed network approximation, expressing the probability that vertices i and j are connected, and that takes the form (Boguñá et al., 2009; Dorogovtsev et al., 2008) āij = kjP (ki|kj) NP (ki) ....

    [...]

  • ...Degree-based mean field (DBMF) theory was the first theoretical approach proposed for the analysis of general dynamical processes on complex networks, and its popularity is due to its applicability to a wide range of dynamical processes on networks (Barrat et al., 2008a; Dorogovtsev et al., 2008)....

    [...]

Journal ArticleDOI
TL;DR: The advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology are reported and the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections are overviewed.

2,953 citations


Cites background or methods from "Critical phenomena in complex netwo..."

  • ...of σc. Interestingly enough, the dependence gathered in Eq. (29) has the same functional form for the critical points of other dynamical processes such as percolation and epidemic spreading processes [14, 15, 37]. While this result is still under numerical scrutiny, it would imply that the critical properties of many dynamical processes on complex networks are essentially determined by the topology of the gra...

    [...]

  • ...urprise. Admittedly, this is one of the few cases in which a dynamical process shows a critical behavior when the substrate is described by a power-law connectivity distribution with an exponent γ≤ 3 [14, 15, 37]. In principle it could be a finite size effect, but it turned out from numerical simulations that this was not the case. To determine the exact value of σc, one can make use of standard finite-size scal...

    [...]

  • ...nce on ℓ. The average shortest path length ℓis a property of the network closely related to the efficiency of information processing. Most real-world complex networks are characterized by a small ℓ. lnN[37]. Indeed, it has been conjectured and rationalized that in biological neuronal networks, ℓhas been minimized by evolution [107, 108]. Generally speaking, ℓis lower in SF networks than in ER networks d...

    [...]

Journal ArticleDOI
TL;DR: This work offers a comprehensive review on both structural and dynamical organization of graphs made of diverse relationships (layers) between its constituents, and cover several relevant issues, from a full redefinition of the basic structural measures, to understanding how the multilayer nature of the network affects processes and dynamics.

2,669 citations

References
More filters
Journal ArticleDOI
04 Jun 1998-Nature
TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Abstract: Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.

39,297 citations


"Critical phenomena in complex netwo..." refers methods in this paper

  • ...The small-world networks introduced by Watts and Strogatz (1998) are superpositions of finite dimensional lattices and classical random graphs, thus combining their properties....

    [...]

Journal ArticleDOI
15 Oct 1999-Science
TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Abstract: Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.

33,771 citations


"Critical phenomena in complex netwo..." refers methods in this paper

  • ...In particular, if A=0—the proportional preference,—this is the BarabásiAlbert model (Barabási and Albert, 1999), where the γ exponent of the degree distribution is equal to 3....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Abstract: The emergence of order in natural systems is a constant source of inspiration for both physical and biological sciences. While the spatial order characterizing for example the crystals has been the basis of many advances in contemporary physics, most complex systems in nature do not offer such high degree of order. Many of these systems form complex networks whose nodes are the elements of the system and edges represent the interactions between them. Traditionally complex networks have been described by the random graph theory founded in 1959 by Paul Erdohs and Alfred Renyi. One of the defining features of random graphs is that they are statistically homogeneous, and their degree distribution (characterizing the spread in the number of edges starting from a node) is a Poisson distribution. In contrast, recent empirical studies, including the work of our group, indicate that the topology of real networks is much richer than that of random graphs. In particular, the degree distribution of real networks is a power-law, indicating a heterogeneous topology in which the majority of the nodes have a small degree, but there is a significant fraction of highly connected nodes that play an important role in the connectivity of the network. The scale-free topology of real networks has very important consequences on their functioning. For example, we have discovered that scale-free networks are extremely resilient to the random disruption of their nodes. On the other hand, the selective removal of the nodes with highest degree induces a rapid breakdown of the network to isolated subparts that cannot communicate with each other. The non-trivial scaling of the degree distribution of real networks is also an indication of their assembly and evolution. Indeed, our modeling studies have shown us that there are general principles governing the evolution of networks. Most networks start from a small seed and grow by the addition of new nodes which attach to the nodes already in the system. This process obeys preferential attachment: the new nodes are more likely to connect to nodes with already high degree. We have proposed a simple model based on these two principles wich was able to reproduce the power-law degree distribution of real networks. Perhaps even more importantly, this model paved the way to a new paradigm of network modeling, trying to capture the evolution of networks, not just their static topology.

18,415 citations

Journal ArticleDOI
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Abstract: Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.

17,647 citations


"Critical phenomena in complex netwo..." refers background in this paper

  • ...The reader may refer to the papers of Newman et al. (2001) and Newman (2003b) for the details of this theory based on the generating function technique....

    [...]

  • ...…networks is given by the following expression (Bianconi and Capocci, 2003; Bianconi and Marsili, 2005a): NL ∼ 1 2L ( 〈q2〉 − 〈q〉 〈q〉 )L , (5) which is valid for sufficiently short (at least, for finite) loops, so that the clustering coefficient C(k) = C = 〈C〉 = (〈q2〉−〈q〉)2/(N〈q〉3) (Newman, 2003b)....

    [...]

  • ...For more detail see books and reviews of Albert and Barabási (2002), Dorogovtsev and Mendes (2002, 2003), Newman (2003a), Bollobás and Riordan (2003), Pastor-Satorras and Vespignani (2004), Boccaletti et al. (2006), Durrett (2006), and Caldarelli (2007)....

    [...]

Book
01 Jan 1988
TL;DR: Probabilistic Reasoning in Intelligent Systems as mentioned in this paper is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty, and provides a coherent explication of probability as a language for reasoning with partial belief.
Abstract: From the Publisher: Probabilistic Reasoning in Intelligent Systems is a complete andaccessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty—and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition—in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

15,671 citations