scispace - formally typeset
Search or ask a question
Book

Crop evapotranspiration : guidelines for computing crop water requirements

TL;DR: In this paper, an updated procedure for calculating reference and crop evapotranspiration from meteorological data and crop coefficients is presented, based on the FAO Penman-Monteith method.
Abstract: (First edition: 1998, this reprint: 2004). This publication presents an updated procedure for calculating reference and crop evapotranspiration from meteorological data and crop coefficients. The procedure, first presented in FAO Irrigation and Drainage Paper No. 24, Crop water requirements, in 1977, allows estimation of the amount of water used by a crop, taking into account the effect of the climate and the crop characteristics. The publication incorporates advances in research and more accurate procedures for determining crop water use as recommended by a panel of high-level experts organised by FAO in May 1990. The first part of the guidelines includes procedures for determining reference crop evapotranspiration according to the FAO Penman-Monteith method. These are followed by updated procedures for estimating the evapotranspiration of different crops for different growth stages and ecological conditions.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a spatially and temporally complete, high-resolution (4-km) gridded dataset of surface meteorological variables required in ecological modelling for the contiguous United States from 1979 to 2010 is presented.
Abstract: Landscape-scale ecological modelling has been hindered by suitable high-resolution surface meteorological datasets. To overcome these limitations, desirable spatial attributes of gridded climate data are combined with desirable temporal attributes of regional-scale reanalysis and daily gauge-based precipitation to derive a spatially and temporally complete, high-resolution (4-km) gridded dataset of surface meteorological variables required in ecological modelling for the contiguous United States from 1979 to 2010. Validation of the resulting gridded surface meteorological data, using an extensive network of automated weather stations across the western United States, showed skill comparable to that derived from interpolation using station observations, suggesting it can serve as suitable surrogate for landscape-scale ecological modelling across vast unmonitored areas of the United States. Copyright © 2011 Royal Meteorological Society

1,030 citations


Cites background or methods from "Crop evapotranspiration : guideline..."

  • ...1 m (20 ft) and 2-m observations from RAWS and AgriMet/AWN stations, respectively (Allen et al., 1998)....

    [...]

  • ...Reference ET o is calculated using the Penman-Monteith method (Allen et al., 1998) and requires maximum and minimum temperature, daily average dewpoint temperature (equivalently, vapour pressure or vapour pressure deficit), wind speed and downward shortwave radiation....

    [...]

  • ...Finally, a logarithmic adjustment factor is applied to the 10-m gridded wind field to facilitate a direct comparison to the 6.1 m (20 ft) and 2-m observations from RAWS and AgriMet/AWN stations, respectively (Allen et al., 1998)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present a review of methods for estimating evaporation from landscapes, regions and larger geographic extents, with remotely sensed surface temperatures, and highlight uncertainties and limitations associated with those estimation methods.
Abstract: This paper reviews methods for estimating evaporation from landscapes, regions and larger geographic extents, with remotely sensed surface temperatures, and highlights uncertainties and limitations associated with those estimation methods. Particular attention is given to the validation of such approaches against ground based flux measurements. An assessment of some 30 published validations shows an average root mean squared error value of about 50 W m−2 and relative errors of 15–30%. The comparison also shows that more complex physical and analytical methods are not necessarily more accurate than empirical and statistical approaches. While some of the methods were developed for specific land covers (e.g. irrigation areas only) we also review methods developed for other disciplines, such as hydrology and meteorology, where continuous estimates in space and in time are needed, thereby focusing on physical and analytical methods as empirical methods are usually limited by in situ training data. This review also provides a discussion of temporal and spatial scaling issues associated with the use of thermal remote sensing for estimating evaporation. Improved temporal scaling procedures are required to extrapolate instantaneous estimates to daily and longer time periods and gap-filling procedures are needed when temporal scaling is affected by intermittent satellite coverage. It is also noted that analysis of multi-resolution data from different satellite/sensor systems (i.e. data fusion) will assist in the development of spatial scaling and aggregation approaches, and that several biological processes need to be better characterized in many current land surface models.

1,019 citations

Journal ArticleDOI
TL;DR: In this paper, the authors survey the basic theories, observational methods, satellite algorithms, and land surface models for terrestrial evapotranspiration, including a long-term variability and trends perspective.
Abstract: [1] This review surveys the basic theories, observational methods, satellite algorithms, and land surface models for terrestrial evapotranspiration, E (or λE, i.e., latent heat flux), including a long-term variability and trends perspective. The basic theories used to estimate E are the Monin-Obukhov similarity theory (MOST), the Bowen ratio method, and the Penman-Monteith equation. The latter two theoretical expressions combine MOST with surface energy balance. Estimates of E can differ substantially between these three approaches because of their use of different input data. Surface and satellite-based measurement systems can provide accurate estimates of diurnal, daily, and annual variability of E. But their estimation of longer time variability is largely not established. A reasonable estimate of E as a global mean can be obtained from a surface water budget method, but its regional distribution is still rather uncertain. Current land surface models provide widely different ratios of the transpiration by vegetation to total E. This source of uncertainty therefore limits the capability of models to provide the sensitivities of E to precipitation deficits and land cover change.

913 citations

Journal ArticleDOI
TL;DR: In this paper, a review of 84 literature sources with results of experiments not older than 25 years, it was found that the ranges of CWP of wheat, rice, cotton and maize exceed in all cases those reported by FAO earlier.

908 citations

References
More filters
Journal ArticleDOI
TL;DR: It is shown that a satisfactory account can be given of open water evaporation at four widely spaced sites in America and Europe, the results for bare soil receive a reasonable check in India, and application of theresults for turf shows good agreement with estimates of evapolation from catchment areas in the British Isles.
Abstract: Two theoretical approaches to evaporation from saturated surfaces are outlined, the first being on an aerodynamic basis in which evaporation is regarded as due to turbulent transport of vapour by a process of eddy diffusion, and the second being on an energy basis in which evaporation is regarded as one of the ways of degrading incoming radiation. Neither approach is new, but a combination is suggested that eliminates the parameter measured with most difficulty—surface temperature—and provides for the first time an opportunity to make theoretical estimates of evaporation rates from standard meteorological data, estimates that can be retrospective. Experimental work to test these theories shows that the aerodynamic approach is not adequate and an empirical expression, previously obtained in America, is a better description of evaporation from open water. The energy balance is found to be quite successful. Evaporation rates from wet bare soil and from turf with an adequate supply of water are obtained as fractions of that from open water, the fraction for turf showing a seasonal change attributed to the annual cycle of length of daylight. Finally, the experimental results are applied to data published elsewhere and it is shown that a satisfactory account can be given of open water evaporation at four widely spaced sites in America and Europe, the results for bare soil receive a reasonable check in India, and application of the results for turf shows good agreement with estimates of evaporation from catchment areas in the British Isles.

6,711 citations

Journal ArticleDOI
TL;DR: In this article, the large-scale parameterization of the surface fluxes of sensible and latent heat is properly expressed in terms of energetic considerations over land while formulas of the bulk aerodynamic type are most suitahle over the sea.
Abstract: In an introductory review it is reemphasized that the large-scale parameterization of the surface fluxes of sensible and latent heat is properly expressed in terms of energetic considerations over land while formulas of the bulk aerodynamic type are most suitahle over the sea. A general framework is suggested. Data from a number of saturated land sites and open water sites in the absence of advection suggest a widely applicable formula for the relationship between sensible and latent heat fluxes. For drying land surfaces, we assume that the evaporation rate is given by the same formula for evaporation multiplied by a factor. This factor is found to remain at unity while an amount of water, varying from one site to another, is evaporated. Following this a linear decrease sets in, reducing the evaporation rate to zero after a further 5 cm of evaporation, the same at several sites examined.

5,918 citations

Book
01 Jan 1976
TL;DR: Water quality for agriculture, water quality in agriculture for agriculture as mentioned in this paper, water quality of agriculture, Water quality of water for agriculture in agriculture, مرکز فناوری اطلاعات و اسلاز رسانی
Abstract: Water quality for agriculture , Water quality for agriculture , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

3,518 citations

Journal ArticleDOI
TL;DR: In this paper, the stomatal conductance of illuminated leaves is a function of current levels of temperature, vapour pressure deficit, leaf water potential (really turgor pressure) and ambient CO $_2$ concentration and when plotted against any one of these variables a scatter diagram results.
Abstract: Attempts to correlate values of stomatal conductance and leaf water potential with particular environmental variables in the field are generally of only limited success because they are simultaneously affected by a number of environmental variables. For example, correlations between leaf water potential and either flux of radiant energy or vapour pressure deficit show a diurnal hysteresis which leads to a scatter diagram if many values are plotted. However, a simple model may be adequate to relate leaf water potential to the flow of water through the plant. The stomatal conductance of illuminated leaves is a function of current levels of temperature, vapour pressure deficit, leaf water potential (really turgor pressure) and ambient CO $_2$ concentration. Consequently, when plotted against any one of these variables a scatter diagram results. Physiological knowledge of stomatal functioning is not adequate to provide a mechanistic model linking stomatal conductance to all these variables. None the less, the parameters describing the relationships with the variables can be conveniently estimated from field data by a technique of non-linear least squares, for predictive purposes and to describe variations in response from season to season and plant to plant.

2,897 citations

Book ChapterDOI
01 Jan 1986
TL;DR: In this paper, a methodology to quantify yield response to water through aggregate components which form the "handles" to assess crop yields under both adequate and limited water supply is presented, which takes into account maximum and actual crop yields as influenced by water deficits using yield response functions relating relative yield decrease and evapotranspiration deficits.
Abstract: This publication presents a methodology to quantify yield response to water through aggregate components which form the "handles" to assess crop yields under both adequate and limited water supply. The method presented in part A takes into account maximum and actual crop yields as influenced by water deficits using yield response functions relating relative yield decrease and evapotranspiration deficits. Part B gives an account of water-related crop yield and quality information for 26 crops

2,680 citations