scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Crowdroid: behavior-based malware detection system for Android

TL;DR: The method is shown to be an effective means of isolating the malware and alerting the users of a downloaded malware, showing the potential for avoiding the spreading of a detected malware to a larger community.
Abstract: The sharp increase in the number of smartphones on the market, with the Android platform posed to becoming a market leader makes the need for malware analysis on this platform an urgent issue.In this paper we capitalize on earlier approaches for dynamic analysis of application behavior as a means for detecting malware in the Android platform. The detector is embedded in a overall framework for collection of traces from an unlimited number of real users based on crowdsourcing. Our framework has been demonstrated by analyzing the data collected in the central server using two types of data sets: those from artificial malware created for test purposes, and those from real malware found in the wild. The method is shown to be an effective means of isolating the malware and alerting the users of a downloaded malware. This shows the potential for avoiding the spreading of a detected malware to a larger community.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
01 Jan 2014
TL;DR: DREBIN is proposed, a lightweight method for detection of Android malware that enables identifying malicious applications directly on the smartphone and outperforms several related approaches and detects 94% of the malware with few false alarms.
Abstract: Malicious applications pose a threat to the security of the Android platform. The growing amount and diversity of these applications render conventional defenses largely ineffective and thus Android smartphones often remain unprotected from novel malware. In this paper, we propose DREBIN, a lightweight method for detection of Android malware that enables identifying malicious applications directly on the smartphone. As the limited resources impede monitoring applications at run-time, DREBIN performs a broad static analysis, gathering as many features of an application as possible. These features are embedded in a joint vector space, such that typical patterns indicative for malware can be automatically identified and used for explaining the decisions of our method. In an evaluation with 123,453 applications and 5,560 malware samples DREBIN outperforms several related approaches and detects 94% of the malware with few false alarms, where the explanations provided for each detection reveal relevant properties of the detected malware. On five popular smartphones, the method requires 10 seconds for an analysis on average, rendering it suitable for checking downloaded applications directly on the device.

1,905 citations


Cites methods from "Crowdroid: behavior-based malware d..."

  • ...Similarly, the methods Crowdroid [4], DroidMat [36], Adagio [20], MAST [5], and DroidAPIMiner [1] analyze features statically extracted from Android applications using machine learning techniques....

    [...]

Proceedings Article
01 Jan 2012
TL;DR: A permissionbased behavioral footprinting scheme to detect new samples of known Android malware families and a heuristics-based filtering scheme to identify certain inherent behaviors of unknown malicious families are proposed.
Abstract: In this paper, we present a systematic study for the detection of malicious applications (or apps) on popular Android Markets. To this end, we first propose a permissionbased behavioral footprinting scheme to detect new samples of known Android malware families. Then we apply a heuristics-based filtering scheme to identify certain inherent behaviors of unknown malicious families. We implemented both schemes in a system called DroidRanger. The experiments with 204, 040 apps collected from five different Android Markets in May-June 2011 reveal 211 malicious ones: 32 from the official Android Market (0.02% infection rate) and 179 from alternative marketplaces (infection rates ranging from 0.20% to 0.47%). Among those malicious apps, our system also uncovered two zero-day malware (in 40 apps): one from the official Android Market and the other from alternative marketplaces. The results show that current marketplaces are functional and relatively healthy. However, there is also a clear need for a rigorous policing process, especially for non-regulated alternative marketplaces.

805 citations

Proceedings ArticleDOI
16 Oct 2012
TL;DR: An analysis of the permission system of the Android smartphone OS is performed and it is found that a trade-off exists between enabling least-privilege security with fine-grained permissions and maintaining stability of the permissions specification as the Android OS evolves.
Abstract: Modern smartphone operating systems (OSs) have been developed with a greater emphasis on security and protecting privacy. One of the mechanisms these systems use to protect users is a permission system, which requires developers to declare what sensitive resources their applications will use, has users agree with this request when they install the application and constrains the application to the requested resources during runtime. As these permission systems become more common, questions have risen about their design and implementation. In this paper, we perform an analysis of the permission system of the Android smartphone OS in an attempt to begin answering some of these questions. Because the documentation of Android's permission system is incomplete and because we wanted to be able to analyze several versions of Android, we developed PScout, a tool that extracts the permission specification from the Android OS source code using static analysis. PScout overcomes several challenges, such as scalability due to Android's 3.4 million line code base, accounting for permission enforcement across processes due to Android's use of IPC, and abstracting Android's diverse permission checking mechanisms into a single primitive for analysis.We use PScout to analyze 4 versions of Android spanning version 2.2 up to the recently released Android 4.0. Our main findings are that while Android has over 75 permissions, there is little redundancy in the permission specification. However, if applications could be constrained to only use documented APIs, then about 22% of the non-system permissions are actually unnecessary. Finally, we find that a trade-off exists between enabling least-privilege security with fine-grained permissions and maintaining stability of the permission specification as the Android OS evolves.

707 citations


Cites background from "Crowdroid: behavior-based malware d..."

  • ...There is a large body of security research on permissionbased systems [15,16] and in Android security [6,7,8,11,12, 13, 18]....

    [...]

  • ...Crowdroid [7] analyzes the pattern of system calls made by applications to detect malware....

    [...]

Book ChapterDOI
25 Sep 2013
TL;DR: In this article, a robust and lightweight classifier is proposed to mitigate Android malware installation through providing relevant features to malware behavior captured at API level, and evaluated different classifiers using the generated feature set.
Abstract: The increasing popularity of Android apps makes them the target of malware authors. To defend against this severe increase of Android malwares and help users make a better evaluation of apps at install time, several approaches have been proposed. However, most of these solutions suffer from some shortcomings; computationally expensive, not general or not robust enough. In this paper, we aim to mitigate Android malware installation through providing robust and lightweight classifiers. We have conducted a thorough analysis to extract relevant features to malware behavior captured at API level, and evaluated different classifiers using the generated feature set. Our results show that we are able to achieve an accuracy as high as 99% and a false positive rate as low as 2.2% using KNN classifier.

650 citations

Journal ArticleDOI
TL;DR: This paper surveys the state of the art on threats, vulnerabilities and security solutions over the period 2004-2011, by focusing on high-level attacks, such those to user applications, based upon the detection principles, architectures, collected data and operating systems.
Abstract: Nowadays, mobile devices are an important part of our everyday lives since they enable us to access a large variety of ubiquitous services. In recent years, the availability of these ubiquitous and mobile services has significantly increased due to the different form of connectivity provided by mobile devices, such as GSM, GPRS, Bluetooth and Wi-Fi. In the same trend, the number and typologies of vulnerabilities exploiting these services and communication channels have increased as well. Therefore, smartphones may now represent an ideal target for malware writers. As the number of vulnerabilities and, hence, of attacks increase, there has been a corresponding rise of security solutions proposed by researchers. Due to the fact that this research field is immature and still unexplored in depth, with this paper we aim to provide a structured and comprehensive overview of the research on security solutions for mobile devices. This paper surveys the state of the art on threats, vulnerabilities and security solutions over the period 2004-2011, by focusing on high-level attacks, such those to user applications. We group existing approaches aimed at protecting mobile devices against these classes of attacks into different categories, based upon the detection principles, architectures, collected data and operating systems, especially focusing on IDS-based models and tools. With this categorization we aim to provide an easy and concise view of the underlying model adopted by each approach.

512 citations

References
More filters
01 Jan 1967
TL;DR: The k-means algorithm as mentioned in this paper partitions an N-dimensional population into k sets on the basis of a sample, which is a generalization of the ordinary sample mean, and it is shown to give partitions which are reasonably efficient in the sense of within-class variance.
Abstract: The main purpose of this paper is to describe a process for partitioning an N-dimensional population into k sets on the basis of a sample. The process, which is called 'k-means,' appears to give partitions which are reasonably efficient in the sense of within-class variance. That is, if p is the probability mass function for the population, S = {S1, S2, * *, Sk} is a partition of EN, and ui, i = 1, 2, * , k, is the conditional mean of p over the set Si, then W2(S) = ff=ISi f z u42 dp(z) tends to be low for the partitions S generated by the method. We say 'tends to be low,' primarily because of intuitive considerations, corroborated to some extent by mathematical analysis and practical computational experience. Also, the k-means procedure is easily programmed and is computationally economical, so that it is feasible to process very large samples on a digital computer. Possible applications include methods for similarity grouping, nonlinear prediction, approximating multivariate distributions, and nonparametric tests for independence among several variables. In addition to suggesting practical classification methods, the study of k-means has proved to be theoretically interesting. The k-means concept represents a generalization of the ordinary sample mean, and one is naturally led to study the pertinent asymptotic behavior, the object being to establish some sort of law of large numbers for the k-means. This problem is sufficiently interesting, in fact, for us to devote a good portion of this paper to it. The k-means are defined in section 2.1, and the main results which have been obtained on the asymptotic behavior are given there. The rest of section 2 is devoted to the proofs of these results. Section 3 describes several specific possible applications, and reports some preliminary results from computer experiments conducted to explore the possibilities inherent in the k-means idea. The extension to general metric spaces is indicated briefly in section 4. The original point of departure for the work described here was a series of problems in optimal classification (MacQueen [9]) which represented special

24,320 citations

Journal ArticleDOI
TL;DR: TaintDroid as mentioned in this paper is an efficient, system-wide dynamic taint tracking and analysis system capable of simultaneously tracking multiple sources of sensitive data by leveraging Android's virtualized execution environment.
Abstract: Today’s smartphone operating systems frequently fail to provide users with visibility into how third-party applications collect and share their private data. We address these shortcomings with TaintDroid, an efficient, system-wide dynamic taint tracking and analysis system capable of simultaneously tracking multiple sources of sensitive data. TaintDroid enables realtime analysis by leveraging Android’s virtualized execution environment. TaintDroid incurs only 32p performance overhead on a CPU-bound microbenchmark and imposes negligible overhead on interactive third-party applications. Using TaintDroid to monitor the behavior of 30 popular third-party Android applications, in our 2010 study we found 20 applications potentially misused users’ private information; so did a similar fraction of the tested applications in our 2012 study. Monitoring the flow of privacy-sensitive data with TaintDroid provides valuable input for smartphone users and security service firms seeking to identify misbehaving applications.

2,983 citations

Proceedings ArticleDOI
04 Oct 2010
TL;DR: Using TaintDroid to monitor the behavior of 30 popular third-party Android applications, this work found 68 instances of misappropriation of users' location and device identification information across 20 applications.
Abstract: Today's smartphone operating systems frequently fail to provide users with adequate control over and visibility into how third-party applications use their private data. We address these shortcomings with TaintDroid, an efficient, system-wide dynamic taint tracking and analysis system capable of simultaneously tracking multiple sources of sensitive data. TaintDroid provides realtime analysis by leveraging Android's virtualized execution environment. TaintDroid incurs only 14% performance overhead on a CPU-bound micro-benchmark and imposes negligible overhead on interactive third-party applications. Using TaintDroid to monitor the behavior of 30 popular third-party Android applications, we found 68 instances of potential misuse of users' private information across 20 applications. Monitoring sensitive data with TaintDroid provides informed use of third-party applications for phone users and valuable input for smartphone security service firms seeking to identify misbehaving applications.

2,379 citations

Journal ArticleDOI
TL;DR: Evidence is given that short sequences of system calls executed by running processes are a good discriminator between normal and abnormal operating characteristics of several common UNIX programs.
Abstract: A method is introduced for detecting intrusions at the level of privileged processes. Evidence is given that short sequences of system calls executed by running processes are a good discriminator between normal and abnormal operating characteristics of several common UNIX programs. Normal behavior is collected in two waysc Synthetically, by exercising as many normal modes of usage of a program as possible, and in a live user environment by tracing the actual execution of the program. In the former case several types of intrusive behavior were studieds in the latter case, results were analyzed for false positives.

1,435 citations

Proceedings Article
08 Aug 2011
TL;DR: A horizontal study of popular free Android applications uncovered pervasive use/misuse of personal/ phone identifiers, and deep penetration of advertising and analytics networks, but did not find evidence of malware or exploitable vulnerabilities in the studied applications.
Abstract: The fluidity of application markets complicate smartphone security. Although recent efforts have shed light on particular security issues, there remains little insight into broader security characteristics of smartphone applications. This paper seeks to better understand smartphone application security by studying 1,100 popular free Android applications. We introduce the ded decompiler, which recovers Android application source code directly from its installation image. We design and execute a horizontal study of smartphone applications based on static analysis of 21 million lines of recovered code. Our analysis uncovered pervasive use/misuse of personal/ phone identifiers, and deep penetration of advertising and analytics networks. However, we did not find evidence of malware or exploitable vulnerabilities in the studied applications. We conclude by considering the implications of these preliminary findings and offer directions for future analysis.

947 citations