scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.

13 Mar 2020-Science (American Association for the Advancement of Science)-Vol. 367, Iss: 6483, pp 1260-1263
TL;DR: The authors show that this protein binds at least 10 times more tightly than the corresponding spike protein of severe acute respiratory syndrome (SARS)–CoV to their common host cell receptor, and test several published SARS-CoV RBD-specific monoclonal antibodies found that they do not have appreciable binding to 2019-nCoV S, suggesting that antibody cross-reactivity may be limited between the two RBDs.
Abstract: The outbreak of a novel coronavirus (2019-nCoV) represents a pandemic threat that has been declared a public health emergency of international concern. The CoV spike (S) glycoprotein is a key target for vaccines, therapeutic antibodies, and diagnostics. To facilitate medical countermeasure development, we determined a 3.5-angstrom-resolution cryo-electron microscopy structure of the 2019-nCoV S trimer in the prefusion conformation. The predominant state of the trimer has one of the three receptor-binding domains (RBDs) rotated up in a receptor-accessible conformation. We also provide biophysical and structural evidence that the 2019-nCoV S protein binds angiotensin-converting enzyme 2 (ACE2) with higher affinity than does severe acute respiratory syndrome (SARS)-CoV S. Additionally, we tested several published SARS-CoV RBD-specific monoclonal antibodies and found that they do not have appreciable binding to 2019-nCoV S, suggesting that antibody cross-reactivity may be limited between the two RBDs. The structure of 2019-nCoV S should enable the rapid development and evaluation of medical countermeasures to address the ongoing public health crisis.
Citations
More filters
Journal ArticleDOI
TL;DR: A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older and safety over a median of 2 months was similar to that of other viral vaccines.
Abstract: Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a world...

10,274 citations

Journal ArticleDOI
16 Apr 2020-Cell
TL;DR: It is demonstrating that cross-neutralizing antibodies targeting conserved S epitopes can be elicited upon vaccination, and it is shown that SARS-CoV-2 S uses ACE2 to enter cells and that the receptor-binding domains of Sars- coV- 2 S and SARS S bind with similar affinities to human ACE2, correlating with the efficient spread of SATS among humans.

7,219 citations


Cites background or result from "Cryo-EM structure of the 2019-nCoV ..."

  • ...A recently determined SARS-CoV-2 S structure also detected trimers with a single S B domain opened but none entirely closed (Wrapp et al., 2020) ....

    [...]

  • ...We surmise most of these Abs target the highly conserved S 2 subunit (including the fusion peptide region) based on its structural similarity across SARS-CoV-2 and SARS-CoV, the lack of cross-reactivity of several S B -directed Abs (Tian et al., 2020; Wrapp et al., 2020) , and previous reports showing that sera from SARS-CoV-infected individuals target this region (Zhang et al., 2004) ....

    [...]

Journal ArticleDOI
30 Mar 2020-Nature
TL;DR: High-resolution crystal structures of the receptor-binding domain of the spike protein of SARS-CoV-2 and SARS -CoV in complex with ACE2 provide insights into the binding mode of these coronaviruses and highlight essential ACE2-interacting residues.
Abstract: A new and highly pathogenic coronavirus (severe acute respiratory syndrome coronavirus-2, SARS-CoV-2) caused an outbreak in Wuhan city, Hubei province, China, starting from December 2019 that quickly spread nationwide and to other countries around the world1–3. Here, to better understand the initial step of infection at an atomic level, we determined the crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 bound to the cell receptor ACE2. The overall ACE2-binding mode of the SARS-CoV-2 RBD is nearly identical to that of the SARS-CoV RBD, which also uses ACE2 as the cell receptor4. Structural analysis identified residues in the SARS-CoV-2 RBD that are essential for ACE2 binding, the majority of which either are highly conserved or share similar side chain properties with those in the SARS-CoV RBD. Such similarity in structure and sequence strongly indicate convergent evolution between the SARS-CoV-2 and SARS-CoV RBDs for improved binding to ACE2, although SARS-CoV-2 does not cluster within SARS and SARS-related coronaviruses1–3,5. The epitopes of two SARS-CoV antibodies that target the RBD are also analysed for binding to the SARS-CoV-2 RBD, providing insights into the future identification of cross-reactive antibodies. High-resolution crystal structures of the receptor-binding domain of the spike protein of SARS-CoV-2 and SARS-CoV in complex with ACE2 provide insights into the binding mode of these coronaviruses and highlight essential ACE2-interacting residues.

4,555 citations

Journal ArticleDOI
04 Mar 2020-Science
TL;DR: Cryo–electron microscopy structures of full-length human ACE2 in the presence of the neutral amino acid transporter B0AT1 with or without the receptor binding domain (RBD) of the surface spike glycoprotein of SARS-CoV-2 are presented, providing important insights into the molecular basis for coronavirus recognition and infection.
Abstract: Angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for severe acute respiratory syndrome-coronavirus (SARS-CoV) and the new coronavirus (SARS-CoV-2) that is causing the serious coronavirus disease 2019 (COVID-19) epidemic. Here, we present cryo-electron microscopy structures of full-length human ACE2 in the presence of the neutral amino acid transporter B0AT1 with or without the receptor binding domain (RBD) of the surface spike glycoprotein (S protein) of SARS-CoV-2, both at an overall resolution of 2.9 angstroms, with a local resolution of 3.5 angstroms at the ACE2-RBD interface. The ACE2-B0AT1 complex is assembled as a dimer of heterodimers, with the collectrin-like domain of ACE2 mediating homodimerization. The RBD is recognized by the extracellular peptidase domain of ACE2 mainly through polar residues. These findings provide important insights into the molecular basis for coronavirus recognition and infection.

4,109 citations

References
More filters
Journal ArticleDOI
TL;DR: The epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of patients with laboratory-confirmed 2019-nCoV infection in Wuhan, China, were reported.

36,578 citations

Journal ArticleDOI
TL;DR: Two unusual extensions are presented: Multiscale, which adds the ability to visualize large‐scale molecular assemblies such as viral coats, and Collaboratory, which allows researchers to share a Chimera session interactively despite being at separate locales.
Abstract: The design, implementation, and capabilities of an extensible visualization system, UCSF Chimera, are discussed. Chimera is segmented into a core that provides basic services and visualization, and extensions that provide most higher level functionality. This architecture ensures that the extension mechanism satisfies the demands of outside developers who wish to incorporate new features. Two unusual extensions are presented: Multiscale, which adds the ability to visualize large-scale molecular assemblies such as viral coats, and Collaboratory, which allows researchers to share a Chimera session interactively despite being at separate locales. Other extensions include Multalign Viewer, for showing multiple sequence alignments and associated structures; ViewDock, for screening docked ligand orientations; Movie, for replaying molecular dynamics trajectories; and Volume Viewer, for display and analysis of volumetric data. A discussion of the usage of Chimera in real-world situations is given, along with anticipated future directions. Chimera includes full user documentation, is free to academic and nonprofit users, and is available for Microsoft Windows, Linux, Apple Mac OS X, SGI IRIX, and HP Tru64 Unix from http://www.cgl.ucsf.edu/chimera/.

35,698 citations

Journal ArticleDOI
TL;DR: CCP4mg is a project that aims to provide a general-purpose tool for structural biologists, providing tools for X-ray structure solution, structure comparison and analysis, and publication-quality graphics.
Abstract: CCP4mg is a project that aims to provide a general-purpose tool for structural biologists, providing tools for X-ray structure solution, structure comparison and analysis, and publication-quality graphics. The map-fitting tools are available as a stand-alone package, distributed as `Coot'.

27,505 citations

Journal ArticleDOI
03 Feb 2020-Nature
TL;DR: Identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China, and it is shown that this virus belongs to the species of SARSr-CoV, indicates that the virus is related to a bat coronav virus.
Abstract: Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1–4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5–7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV. Characterization of full-length genome sequences from patients infected with a new coronavirus (2019-nCoV) shows that the sequences are nearly identical and indicates that the virus is related to a bat coronavirus.

16,857 citations

Journal ArticleDOI
TL;DR: Characteristics of patients who died were in line with the MuLBSTA score, an early warning model for predicting mortality in viral pneumonia, and further investigation is needed to explore the applicability of the Mu LBSTA scores in predicting the risk of mortality in 2019-nCoV infection.

16,282 citations

Related Papers (5)