scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Curcumin induces stress response, neurite outgrowth and prevent NF-kappaB activation by inhibiting the proteasome function.

01 Jan 2006-Neurotoxicity Research (Neurotox Res)-Vol. 9, Iss: 1, pp 29-37
TL;DR: It is shown that curcumin disrupts UPS function by directly inhibiting the enzyme activity of the proteasome’s 20S core catalytic component, which causes an increase in half-life of IκB-α that ultimately leads to the down-regulation of NF-κB activation.
Abstract: Curcumin, a natural polyphenolic compound, has long been known as an anti-tumour and anti-inflammatory compound; although, the common mechanism through which it exhibits such properties are remains unclear. Recently, we reported that the curcumin-induced apoptosis is mediated through the impairment of ubiquitin proteasome system (UPS). Here, we show that curcumin disrupts UPS function by directly inhibiting the enzyme activity of the proteasome's 20S core catalytic component. Like other proteasome inhibitors, curcumin exposure induces neurite outgrowth and the stress response, as evident from the induction of various cytosolic and endoplasmic reticulum chaperones as well as induction of transcription factor CHOP/GADD153. The direct inhibition of proteasome activity also causes an increase in half-life of IkappaB-alpha that ultimately leads to the down-regulation of NF-kappaB activation. These results suggest that curcumin-induced proteasomal malfunction might be linked with both anti-proliferative and anti-inflammatory activities.
Citations
More filters
Journal ArticleDOI
TL;DR: The mechanisms underlying curcumin and derivatives toxicity towards cancer cells are reviewed with particular emphasis on cell death pathways and the ubiquitin-proteasome system.
Abstract: Curcumin and related compounds are known for the large spectrum of activities. The chemical features of these compounds are important for their biological effects with a key role for the thiol-reactive α−β unsaturated carbonyl groups. Curcumin derivatives may overcome the limitation of the bioavailability of the parent compound, while maintaining the key chemical features responsible for biological activities. Curcumin and related compounds show anti-viral, anti-fungal, anti-microbial and anti-tumor activities. The therapeutic effects of curcumin, used as a supplement in cancer therapy, have been documented in various cancer types, in which inhibition of cell growth and survival pathways, induction of apoptosis and other cell death pathways have been reported. Curcumin-induced apoptosis has been linked both to the intrinsic and extrinsic apoptotic pathways. Necroptosis has also been involved in curcumin-induced toxicity. Among curcumin-induced effects, ferroptosis has also been described. The mechanism of curcumin toxicity can be triggered by reactive oxygen species-mediated endoplasmic reticulum stress. Curcumin targets have been identified in the context of the ubiquitin-proteasome system with evidence of inhibition of the proteasome proteolytic activities and cellular deubiquitinases. Curcumin has recently been shown to act on the tumor microenvironment with effects on cancer-associated fibroblasts and immune cells. The related product caffeic acid phenethyl ester has shown promising preclinical results with an effect on the inflammatory microenvironment. Here, we review the mechanisms underlying curcumin and derivatives toxicity towards cancer cells with particular emphasis on cell death pathways and the ubiquitin-proteasome system.

7 citations

01 Jan 2013
TL;DR: In this article, the authors examine the scientific evidence related to the known molecular effects that these polyphenols have on different models of inherited neuromuscular disease, with particular attention to problems with the validity of in vitro evidence.
Abstract: There are several lines of laboratory-based evidence emerging to suggest that purified polyphenol compounds such as resveratrol, found naturally in red grapes, epigallocatechin galate from green tea and curcumin from turmeric, might be useful for the treatment of various inherited neuromuscular diseases, including spinal muscular atrophy, Duchenne muscular dystrophy and Charcot–Marie–Tooth disease. Here, we critically examine the scientific evidence related to the known molecular effects that these polyphenols have on different models of inherited neuromuscular disease, with particular attention to problems with the validity of in vitro evidence. We also present proteomic evidence that polyphenols have in vitro effects on cells related to metal ion chelation in cell-culture media. Although their precise mechanisms of action remain somewhat elusive, polyphenols could be an attractive approach to therapy for inherited neuromuscular disease, especially since they may be safer to use on young children, compared with some of the other drug candidates.

3 citations

Book ChapterDOI
01 Jan 2013
TL;DR: In this chapter, numerous nutraceuticals derived from fruits, vegetables, spices, nuts, and legumes have shown promise as proteasome inhibitors, which may contribute to their anticancer activities.
Abstract: The proteasome is a multicatalytic proteinase complex, the inhibition of which has been associated with induction of apoptosis, anti-tumorigenesis, and chemosensitization of tumor cells to the conventional chemotherapeutics agents and radiation. Therefore, inhibition of the proteasome pathway could be a novel approach for the prevention and treatment of cancer. Proteasome inhibitors mediate the antitumor effect through modulation of transcription factors, cell cycle regulatory proteins, and pro- and anti-apoptotic proteins. Although numerous proteasome inhibitors have been rationally designed, most of them not only are enormously expensive but also produce serious side effects. Currently, numerous nutraceuticals such as curcumin, sesamin, quercetin, silybinin, sulforaphane, resveratrol, tubocapsenolide A, CDDO-Me, γ-tocotrienol, apigenin, ferulic acid, betulinic acid, anacardic acid, genistein, withaferin A, emodin, withanolide, and gambogic acid derived from fruits, vegetables, spices, nuts, and legumes have shown promise as proteasome inhibitors, which may contribute to their anticancer activities. Although the mechanism of proteasome inhibition by nutraceuticals is different, it plays a crucial role against cancer. In this chapter, we discuss the targets of these nutraceuticals in the proteasome pathway. How inhibition of the proteasome pathway by these natural agents contributes to their anticancer activities is also discussed.

2 citations

01 Jan 2014
TL;DR: In this article, the authors describe a mechanism that explains resistance of both tumor cell lines and cultured primary human glioma cells to cetuximab and show that treatment of these cells with cetuleimab promoted DNA synthesis in the absence of increased proliferation, suggesting that DNA repair pathways were activated.
Abstract: Overexpression of the epidermal growth factor receptor (EGFR) is observed in a large number of neoplasms. The monoclonal antibody cetuximab/Erbitux is frequently applied to treat EGFR-expressing tumors. However, the application of cetuximab alone or in combination with radio- and/or chemotherapy often yields only little benefit for patients. In the present study, we describe a mechanism that explains resistance of both tumor cell lines and cultured primary human glioma cells to cetuximab. Treatment of these cells with cetuximab promoted DNA synthesis in the absence of increased proliferation, suggesting that DNA repair pathways were activated. Indeed, we observed that cetuximab promoted the activation of the DNA damage response pathway and prevented the degradation of essential meiotic endonuclease 1 homolog 1 (Eme1), a heterodimeric endonuclease involved in

2 citations

Journal ArticleDOI
TL;DR: In this article , the authors identify a natural chemical, curcumin, which is able to reduce pathological endoplasmic reticulum (ER) stress in a cell model of EDM5 by promoting the proteasomal degradation mutant matrilin-3.
Abstract: The intracellular retention of mutant cartilage matrix proteins and pathological endoplasmic reticulum (ER) stress disrupts ossification and has been identified as a shared disease mechanism in a range of skeletal dysplasias including short limbed-dwarfism, multiple epiphyseal dysplasia type 5 (EDM5). Although targeting ER stress is an attractive avenue for treatment and has proven successful in the treatment of a related skeletal dysplasia, to date no drugs have proven successful in reducing ER stress in EDM5 caused by the retention of mutant matrilin-3. Our exciting findings show that by using our established luciferase ER stress screening assay, we can identify a “natural” chemical, curcumin, which is able to reduce pathological ER stress in a cell model of EDM5 by promoting the proteasomal degradation mutant matrilin-3. Therefore, this is an important in vitro study in which we describe, for the first time, the success of a naturally occurring chemical as a potential treatment for this currently incurable rare skeletal disease. As studies show that curcumin can be used as a potential treatment for range of diseases in vitro, current research is focused on developing novel delivery strategies to enhance its bioavailability. This is an important and exciting area of research that will have significant clinical impact on a range of human diseases including the rare skeletal disease, EDM5.

1 citations

References
More filters
Journal ArticleDOI
TL;DR: It is clear now that degradation of cellular proteins is a highly complex, temporally controlled, and tightly regulated process that plays major roles in a variety of basic pathways during cell life and death as well as in health and disease.
Abstract: Between the 1960s and 1980s, most life scientists focused their attention on studies of nucleic acids and the translation of the coded information. Protein degradation was a neglected area, conside...

3,990 citations

Journal Article
TL;DR: Evidence has also been presented to suggest that curcumin can suppress tumor initiation, promotion and metastasis, and Pharmacologically,Curcumin has been found to be safe.
Abstract: Curcumin (diferuloylmethane) is a polyphenol derived from the plant Curcuma longa, commonly called turmeric. Extensive research over the last 50 years has indicated this polyphenol can both prevent and treat cancer. The anticancer potential of curcumin stems from its ability to suppress proliferation of a wide variety of tumor cells, down-regulate transcription factors NF- κB, AP-1 and Egr-1; down-regulate the expression of COX2, LOX, NOS, MMP-9, uPA, TNF, chemokines, cell surface adhesion molecules and cyclin D1; down-regulate growth factor receptors (such as EGFR and HER2); and inhibit the activity of c-Jun N-terminal kinase, protein tyrosine kinases and protein serine/threonine kinases. In several systems, curcumin has been described as a potent antioxidant and anti-inflammatory agent. Evidence has also been presented to suggest that curcumin can suppress tumor initiation, promotion and metastasis. Pharmacologically, curcumin has been found to be safe. Human clinical trials indicated no dose-limiting toxicity when administered at doses up to 10 g/day. All of these studies suggest that curcumin has enormous potential in the prevention and therapy of cancer. The current review describes in detail the data supporting these studies. Curcumin, derived from turmeric (vernacular name: Haldi), is a rhizome of the plant Curcuma longa. The medicinal use of this plant has been documented in Ayurveda (the Indian

2,453 citations

Journal ArticleDOI
TL;DR: It appears that when given orally, curcumin is far less active than after i.p. administration, and systemic effects seem to be questionable after oral application except that they occur at very low concentrations ofCurcumin, which does not exclude a local action in the gastrointestinal tract.
Abstract: The data reviewed indicate that extracts of Curcuma longa exhibit anti-inflammatory activity after parenteral application in standard animal models used for testing anti-inflammatory activity It turned out that curcumin and the volatile oil are at least in part responsible for this action It appears that when given orally, curcumin is far less active than after ip administration This may be due to poor absorption, as discussed Data on histamine-induced ulcers are controversial, and studies on the secretory activity (HCl, pepsinogen) are still lacking In vitro, curcumin exhibited antispasmodic activity Since there was a protective effect of extracts of Curcuma longa on the liver and a stimulation of bile secretion in animals, Curcuma longa has been advocated for use in liver disorders Evidence for an effect on liver disease in humans is not yet available From the facts that after oral application only traces of curcumin were found in the blood and that, on the other hand, most of the curcumin is excreted via the faeces it may be concluded that curcumin is absorbed poorly by the gastrointestinal tract and/or underlies presystemic transformation Systemic effects therefore seem to be questionable after oral application except that they occur at very low concentrations of curcumin This does not exclude a local action in the gastrointestinal tract

1,714 citations

Journal ArticleDOI
TL;DR: It is demonstrated that curcumin (diferuloylmethane), a known anti-inflammatory and anticarcinogenic agent, is a potent inhibitor of NF-κB activation.

1,326 citations

Journal ArticleDOI
TL;DR: The molecular sequelae of PS-341 treatment in MM cells are characterized and the rationale for future clinical trials of this promising agent, in combination with conventional and novel therapies, to improve patient outcome in MM is explained.
Abstract: The proteasome inhibitor PS-341 inhibits IκB degradation, prevents NF-κB activation, and induces apoptosis in several types of cancer cells, including chemoresistant multiple myeloma (MM) cells. PS-341 has marked clinical activity even in the setting of relapsed refractory MM. However, PS-341-induced apoptotic cascade(s) are not yet fully defined. By using gene expression profiling, we characterized the molecular sequelae of PS-341 treatment in MM cells and further focused on molecular pathways responsible for the anticancer actions of this promising agent. The transcriptional profile of PS-341-treated cells involved down-regulation of growth/survival signaling pathways, and up-regulation of molecules implicated in proapoptotic cascades (which are both consistent with the proapoptotic effect of proteasome inhibition), as well as up-regulation of heat-shock proteins and ubiquitin/proteasome pathway members (which can correspond to stress responses against proteasome inhibition). Further studies on these pathways showed that PS-341 decreases the levels of several antiapoptotic proteins and triggers a dual apoptotic pathway of mitochondrial cytochrome c release and caspase-9 activation, as well as activation of Jun kinase and a Fas/caspase-8-dependent apoptotic pathway [which is inhibited by a dominant negative (decoy) Fas construct]. Stimulation with IGF-1, as well as overexpression of Bcl-2 or constitutively active Akt in MM cells also modestly attenuates PS-341-induced cell death, whereas inhibitors of the BH3 domain of Bcl-2 family members or the heat-shock protein 90 enhance tumor cell sensitivity to proteasome inhibition. These data provide both insight into the molecular mechanisms of antitumor activity of PS-341 and the rationale for future clinical trials of PS-341, in combination with conventional and novel therapies, to improve patient outcome in MM.

763 citations