scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Curdlan-Based Hydrogels for Potential Application as Dressings for Promotion of Skin Wound Healing-Preliminary In Vitro Studies.

30 Apr 2021-Materials (Multidisciplinary Digital Publishing Institute)-Vol. 14, Iss: 9, pp 2344
TL;DR: In this paper, the ability of hydrogels to absorb simulated wound fluid and water vapor permeability, as well as their capacity to release calcium ions, was evaluated using normal human skin fibroblasts.
Abstract: The aim of this work was to establish whether novel curdlan-based hydrogels enriched with Ca2+ ions may be considered as potential candidates for dressings, for the acceleration of skin wound healing. Firstly, biomaterials were allocated for evaluation of structural and mechanical properties. Subsequently, the ability of hydrogels to absorb simulated wound fluid and water vapor permeability, as well their capacity to release calcium ions, was evaluated. The biocompatibility of biomaterials was assessed using normal human skin fibroblasts. Importantly, the main features of the obtained curdlan-based hydrogels were compared with those of KALTOSTAT® (a commercial calcium sodium alginate wound dressing). The obtained results showed that curdlan-based biomaterials possessed a mesoporous structure (pore diameter ranged from 14–48 nm) and exhibited a good ability to absorb simulated wound fluid (swelling ratio close to 974–1229%). Moreover, in a wet state, they enabled proper water vapor transmission rate (>2000 g/m2/day), thanks to their hydrogel structure. Finally, it was found that biomaterial composed of 11 wt.% of curdlan (Cur_11%) possessed the most desirable biological properties in vitro. It released a beneficial amount of calcium ions to the aqueous environment (approximately 6.12 mM), which significantly enhanced fibroblast viability and proliferation. Taking into account the beneficial properties of Cur_11% biomaterial, it seems justified to subject it to more advanced cell culture experiments in vitro and to in vivo studies in order to determine its precise influence on skin wound healing.
Citations
More filters
Journal ArticleDOI
TL;DR: The basic information of hydrogels, such as structure, classification, and synthesis, are introduced and the recent applications ofHydrogels in 3D cell cultures, drug delivery, wound dressing, and tissue engineering are described.
Abstract: Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the high water content, soft structure, and porosity of hydrogels, they closely resemble living tissues. Research in recent years shows that hydrogels have been applied in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Along with the underlying technology improvements of hydrogel development, hydrogels can be expected to be applied in more fields. Although not all hydrogels have good biodegradability and biocompatibility, such as synthetic hydrogels (polyvinyl alcohol, polyacrylamide, polyethylene glycol hydrogels, etc.), their biodegradability and biocompatibility can be adjusted by modification of their functional group or incorporation of natural polymers. Hence, scientists are still interested in the biomedical applications of hydrogels due to their creative adjustability for different uses. In this review, we first introduce the basic information of hydrogels, such as structure, classification, and synthesis. Then, we further describe the recent applications of hydrogels in 3D cell cultures, drug delivery, wound dressing, and tissue engineering.

37 citations

Journal ArticleDOI
01 Feb 2023-Gels
TL;DR: A detailed review of polysaccharide-based multifunctional hydrogel bio-adhesives for wound healing can be found in this paper , where the design criteria and functionalities of ideal hyaluronic acid-based biomolecular adhesives are discussed.
Abstract: Wound healing is a long-term and complex biological process that involves multiple hemostasis, inflammation, proliferation, and remodeling stages. In order to realize comprehensive and systematic wound management, appropriate wound treatment bio-adhesives are urgently needed. Hydrogel bio-adhesives have excellent properties and show unique and remarkable advantages in the field of wound management. This review begins with a detailed description of the design criteria and functionalities of ideal hydrogel bio-adhesives for wound healing. Then, recent advances in polysaccharide-based multifunctional hydrogel bio-adhesives, which involve chitosan, hyaluronic acid, alginate, cellulose, dextran, konjac glucomannan, chondroitin sulfate, and other polysaccharides, are comprehensively discussed. Finally, the current challenges and future research directions of polysaccharide-based hydrogel bio-adhesives for wound healing are proposed to stimulate further exploration by researchers.

17 citations

Journal ArticleDOI
TL;DR: A review on the biosynthetic pathways, regulatory mechanisms and metabolic engineering strategies for curdlan production is presented in this article, where the authors discuss the challenges that are frequently encountered during curdlen biosynthesis and discuss the directions for future directions.

11 citations

Journal ArticleDOI
TL;DR: This research presents effective method to fabricate C60 fullerenol-gentamicin conjugate and proves that such derivative possesses desired antibacterial properties without unfavorable cytotoxic effects towards eukaryotic cells in vitro.
Abstract: This study aimed to develop, characterize, and evaluate antibacterial and cytotoxic properties of novel fullerene derivative composed of C60 fullerenol and standard aminoglycoside antibiotic–gentamicin (C60 fullerenol-gentamicin conjugate). The successful introduction of gentamicin to fullerenol was confirmed by X-ray photoelectron spectroscopy which together with thermogravimetric and spectroscopic analysis revealing the formula of the composition as C60(OH)12(GLYMO)11(Gentamicin)0.8. The dynamic light scattering (DLS) revealed that conjugate possessed ability to form agglomerates in water (size around 115 nm), while Zeta potential measurements demonstrated that such agglomerates possessed neutral character. In vitro biological assays indicated that obtained C60 fullerenol-gentamicin conjugate possessed the same antibacterial activity as standard gentamicin against Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli, which proves that combination of fullerenol with gentamicin does not cause the loss of antibacterial activity of antibiotic. Moreover, cytotoxicity assessment demonstrated that obtained fullerenol-gentamicin derivative did not decrease viability of normal human fibroblasts (model eukaryotic cells) compared to control fibroblasts. Thus, taking into account all of the results, it can be stated that this research presents effective method to fabricate C60 fullerenol-gentamicin conjugate and proves that such derivative possesses desired antibacterial properties without unfavorable cytotoxic effects towards eukaryotic cells in vitro. These promising preliminary results indicate that obtained C60 fullerenol-gentamicin conjugate could have biomedical potential. It may be presumed that obtained fullerenol may be used as an effective carrier for antibiotic, and developed fullerenol-gentamicin conjugate may be apply locally (i.e., at the wound site). Moreover, in future we will evaluate possibility of its applications in inter alia tissue engineering, namely as a component of wound dressings and implantable biomaterials.

6 citations

Journal ArticleDOI
TL;DR: In this article , the development, types, and research directions of wound dressings from calcium alginate (CaAlg), using bibliometric analysis with time intervals from 1982 to 2021, were discussed.

4 citations

References
More filters
Journal ArticleDOI
TL;DR: The requirement for formulations with improved properties for effective and accurate delivery of the required therapeutic agents and general formulation approaches towards achieving optimum physical properties and controlled delivery characteristics for an active wound healing dosage form are considered.

2,302 citations

Journal ArticleDOI
TL;DR: Wound classification, the physiology of the wound healing process and the methods used in wound management are discussed.
Abstract: Wound healing remains a challenging clinical problem and correct, efficient wound management is essential. Much effort has been focused on wound care with an emphasis on new therapeutic approaches and the development of technologies for acute and chronic wound management. Wound healing involves multiple cell populations, the extracellular matrix and the action of soluble mediators such as growth factors and cytokines. Although the process of healing is continuous, it may be arbitrarily divided into four phases: (i) coagulation and haemostasis; (ii) inflammation; (iii) proliferation; and (iv) wound remodelling with scar tissue formation. The correct approach to wound management may effectively influence the clinical outcome. This review discusses wound classification, the physiology of the wound healing process and the methods used in wound management.

1,679 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the past and current efforts with a brief description on the featured properties of hydrogel membranes fabricated from biopolymers and synthetic ones for wound dressing applications.

1,059 citations

Journal ArticleDOI
TL;DR: This work reviews the state of the art and the most recent advances in the development of wound dressings for DFU treatment, with special emphasis given to systems employing new polymeric biomaterials, and to the latest and innovative therapeutic strategies and delivery approaches.

568 citations

Journal ArticleDOI
TL;DR: A 2018 retrospective analysis of Medicare beneficiaries identified that ∼8.2 million people had wounds with or without infections, with highest expenses were for surgical wounds followed by diabetic foot ulcers, with a higher trend toward costs associated with outpatient wound care compared with inpatient.
Abstract: Significance: A 2018 retrospective analysis of Medicare beneficiaries identified that ∼8.2 million people had wounds with or without infections. Medicare cost estimates for acute and chronic wound treatments ranged from $28.1 billion to $96.8 billion. Highest expenses were for surgical wounds followed by diabetic foot ulcers, with a higher trend toward costs associated with outpatient wound care compared with inpatient. Increasing costs of health care, an aging population, recognition of difficult-to-treat infection threats such as biofilms, and the continued threat of diabetes and obesity worldwide make chronic wounds a substantial clinical, social, and economic challenge. Recent Advances: Chronic wounds are not a problem in an otherwise healthy population. Underlying conditions ranging from malnutrition, to stress, to metabolic syndrome, predispose patients to chronic, nonhealing wounds. From an economic point of view, the annual wound care products market is expected to reach $15-22 billion by 2024. The National Institutes of Health's (NIH) Research Portfolio Online Reporting Tool (RePORT) now lists wounds as a category. Future Directions: A continued rise in the economic, clinical, and social impact of wounds warrants a more structured approach and proportionate investment in wound care, education, and related research.

544 citations

Related Papers (5)