scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Current time-domain methods for assessing tissue motion by analysis from reflected ultrasound echoes-a review

01 Mar 1993-IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control (IEEE Trans Ultrason Ferroelectr Freq Control)-Vol. 40, Iss: 2, pp 84-102
TL;DR: An overview of time-domain techniques that have appeared in the literature over the past few years is presented, and their potential advantages over Doppler are examined, and the individual techniques are compared.
Abstract: The Doppler technique has traditionally been the method used to extract motion information from ultrasonic echoes reflected by moving tissues. The Doppler technique has been around for a long time, and has been extensively reviewed and analyzed in the literature. Recently, time-domain methodologies for estimating tissue motion have gained in popularity. Time-domain methods have advantages over Doppler methods in many applications, and as of yet have not been comprehensively reviewed. An overview of time-domain techniques that have appeared in the literature over the past few years is presented. Their potential advantages over Doppler are examined, and the individual techniques are compared. >
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors offer a new book that enPDFd the perception of the visual world to read, which they call "Let's Read". But they do not discuss how to read it.
Abstract: Let's read! We will often find out this sentence everywhere. When still being a kid, mom used to order us to always read, so did the teacher. Some books are fully read in a week and we need the obligation to support reading. What about now? Do you still love reading? Is reading only for you who have obligation? Absolutely not! We here offer you a new book enPDFd the perception of the visual world to read.

2,250 citations

Journal ArticleDOI
TL;DR: The underlying physical principles of the technique, its practical implementation, and a range of clinical and preclinical applications are reviewed.
Abstract: Photoacoustic (PA) imaging, also called optoacoustic imaging, is a new biomedical imaging modality based on the use of laser-generated ultrasound that has emerged over the last decade. It is a hybrid modality, combining the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging. In essence, a PA image can be regarded as an ultrasound image in which the contrast depends not on the mechanical and elastic properties of the tissue, but its optical properties, specifically optical absorption. As a consequence, it offers greater specificity than conventional ultrasound imaging with the ability to detect haemoglobin, lipids, water and other light-absorbing chomophores, but with greater penetration depth than purely optical imaging modalities that rely on ballistic photons. As well as visualizing anatomical structures such as the microvasculature, it can also provide functional information in the form of blood oxygenation, blood flow and temperature. All of this can be achieved over a wide range of length scales from micrometres to centimetres with scalable spatial resolution. These attributes lend PA imaging to a wide variety of applications in clinical medicine, preclinical research and basic biology for studying cancer, cardiovascular disease, abnormalities of the microcirculation and other conditions. With the emergence of a variety of truly compelling in vivo images obtained by a number of groups around the world in the last 2–3 years, the technique has come of age and the promise of PA imaging is now beginning to be realized. Recent highlights include the demonstration of whole-body small-animal imaging, the first demonstrations of molecular imaging, the introduction of new microscopy modes and the first steps towards clinical breast imaging being taken as well as a myriad of in vivo preclinical imaging studies. In this article, the underlying physical principles of the technique, its practical implementation, and a range of clinical and preclinical applications are reviewed.

1,793 citations

Journal ArticleDOI
TL;DR: In this paper, a split-spectrum amplitude-decorrelation angiography (SSADA) was proposed to improve the signal-to-noise ratio (SNR) of flow detection.
Abstract: Amplitude decorrelation measurement is sensitive to transverse flow and immune to phase noise in comparison to Doppler and other phase-based approaches. However, the high axial resolution of OCT makes it very sensitive to the pulsatile bulk motion noise in the axial direction. To overcome this limitation, we developed split-spectrum amplitude-decorrelation angiography (SSADA) to improve the signal-to-noise ratio (SNR) of flow detection. The full OCT spectrum was split into several narrower bands. Inter-B-scan decorrelation was computed using the spectral bands separately and then averaged. The SSADA algorithm was tested on in vivo images of the human macula and optic nerve head. It significantly improved both SNR for flow detection and connectivity of microvascular network when compared to other amplitude-decorrelation algorithms.

1,507 citations

Journal Article
TL;DR: In this paper, a split-spectrum amplitude-decorrelation angiography (SSADA) was proposed to improve the signal-to-noise ratio (SNR) of flow detection.
Abstract: Amplitude decorrelation measurement is sensitive to transverse flow and immune to phase noise in comparison to Doppler and other phase-based approaches. However, the high axial resolution of OCT makes it very sensitive to the pulsatile bulk motion noise in the axial direction. To overcome this limitation, we developed split-spectrum amplitude-decorrelation angiography (SSADA) to improve the signal-to-noise ratio (SNR) of flow detection. The full OCT spectrum was split into several narrower bands. Inter-B-scan decorrelation was computed using the spectral bands separately and then averaged. The SSADA algorithm was tested on in vivo images of the human macula and optic nerve head. It significantly improved both SNR for flow detection and connectivity of microvascular network when compared to other amplitude-decorrelation algorithms.

1,151 citations

Journal ArticleDOI
TL;DR: In this paper, a new ultrasonic method of quantifying regional deformation has been introduced based on the principles of "strain" and'strain rate' imaging, which introduces concepts derived from mechanical engineering which most echocardiographers are not familiar with.
Abstract: The non-invasive quantification of regional myocardial function is an important goal in clinical cardiology. Myocardial thickening/thinning indices is one method of attempting to define regional myocardial function. A new ultrasonic method of quantifying regional deformation has been introduced based on the principles of 'strain' and 'strain rate' imaging. These new imaging modes introduce concepts derived from mechanical engineering which most echocardiographers are not familiar with. In order to maximally exploit these new techniques, an understanding of what they measure is indispensable. This paper will define each of these modalities in terms of physical principles and will give an introduction to the principles of data acquisition and processing required to implement ultrasonic strain and strain rate imaging. In addition, the current status of development of the technique and its limitations will be discussed, together with examples of potential clinical applications.

971 citations

References
More filters
Proceedings ArticleDOI
12 Nov 1981
TL;DR: In this article, a method for finding the optical flow pattern is presented which assumes that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image, and an iterative implementation is shown which successfully computes the Optical Flow for a number of synthetic image sequences.
Abstract: Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. A method for finding the optical flow pattern is presented which assumes that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image. An iterative implementation is shown which successfully computes the optical flow for a number of synthetic image sequences. The algorithm is robust in that it can handle image sequences that are quantized rather coarsely in space and time. It is also insensitive to quantization of brightness levels and additive noise. Examples are included where the assumption of smoothness is violated at singular points or along lines in the image.

8,078 citations

Book
01 Jan 1950

3,843 citations

Journal ArticleDOI
TL;DR: Initial results of several phantom and excised animal tissue experiments are reported which demonstrate the ability of this technique to quantitatively image strain and elastic modulus distributions with good resolution, sensitivity and with diminished speckle.

3,636 citations

Journal ArticleDOI
TL;DR: In this paper, the authors offer a new book that enPDFd the perception of the visual world to read, which they call "Let's Read". But they do not discuss how to read it.
Abstract: Let's read! We will often find out this sentence everywhere. When still being a kid, mom used to order us to always read, so did the teacher. Some books are fully read in a week and we need the obligation to support reading. What about now? Do you still love reading? Is reading only for you who have obligation? Absolutely not! We here offer you a new book enPDFd the perception of the visual world to read.

2,250 citations

Journal ArticleDOI
TL;DR: The motion compensation is applied for analysis and design of a hybrid coding scheme and the results show a factor of two gain at low bit rates.
Abstract: A new technique for estimating interframe displacement of small blocks with minimum mean square error is presented. An efficient algorithm for searching the direction of displacement has been described. The results of applying the technique to two sets of images are presented which show 8-10 dB improvement in interframe variance reduction due to motion compensation. The motion compensation is applied for analysis and design of a hybrid coding scheme and the results show a factor of two gain at low bit rates.

1,883 citations